2,720 research outputs found

    Meta-Kernelization using Well-Structured Modulators

    Get PDF
    Kernelization investigates exact preprocessing algorithms with performance guarantees. The most prevalent type of parameters used in kernelization is the solution size for optimization problems; however, also structural parameters have been successfully used to obtain polynomial kernels for a wide range of problems. Many of these parameters can be defined as the size of a smallest modulator of the given graph into a fixed graph class (i.e., a set of vertices whose deletion puts the graph into the graph class). Such parameters admit the construction of polynomial kernels even when the solution size is large or not applicable. This work follows up on the research on meta-kernelization frameworks in terms of structural parameters. We develop a class of parameters which are based on a more general view on modulators: instead of size, the parameters employ a combination of rank-width and split decompositions to measure structure inside the modulator. This allows us to lift kernelization results from modulator-size to more general parameters, hence providing smaller kernels. We show (i) how such large but well-structured modulators can be efficiently approximated, (ii) how they can be used to obtain polynomial kernels for any graph problem expressible in Monadic Second Order logic, and (iii) how they allow the extension of previous results in the area of structural meta-kernelization

    Bisection of Bounded Treewidth Graphs by Convolutions

    Get PDF
    In the Bisection problem, we are given as input an edge-weighted graph G. The task is to find a partition of V(G) into two parts A and B such that ||A| - |B|| <= 1 and the sum of the weights of the edges with one endpoint in A and the other in B is minimized. We show that the complexity of the Bisection problem on trees, and more generally on graphs of bounded treewidth, is intimately linked to the (min, +)-Convolution problem. Here the input consists of two sequences (a[i])^{n-1}_{i = 0} and (b[i])^{n-1}_{i = 0}, the task is to compute the sequence (c[i])^{n-1}_{i = 0}, where c[k] = min_{i=0,...,k}(a[i] + b[k - i]). In particular, we prove that if (min, +)-Convolution can be solved in O(tau(n)) time, then Bisection of graphs of treewidth t can be solved in time O(8^t t^{O(1)} log n * tau(n)), assuming a tree decomposition of width t is provided as input. Plugging in the naive O(n^2) time algorithm for (min, +)-Convolution yields a O(8^t t^{O(1)} n^2 log n) time algorithm for Bisection. This improves over the (dependence on n of the) O(2^t n^3) time algorithm of Jansen et al. [SICOMP 2005] at the cost of a worse dependence on t. "Conversely", we show that if Bisection can be solved in time O(beta(n)) on edge weighted trees, then (min, +)-Convolution can be solved in O(beta(n)) time as well. Thus, obtaining a sub-quadratic algorithm for Bisection on trees is extremely challenging, and could even be impossible. On the other hand, for unweighted graphs of treewidth t, by making use of a recent algorithm for Bounded Difference (min, +)-Convolution of Chan and Lewenstein [STOC 2015], we obtain a sub-quadratic algorithm for Bisection with running time O(8^t t^{O(1)} n^{1.864} log n)

    On Covering Segments with Unit Intervals

    Get PDF
    We study the problem of covering a set of segments on a line with the minimum number of unit-length intervals, where an interval covers a segment if at least one of the two endpoints of the segment falls in the unit interval. We also study several variants of this problem. We show that the restrictions of the aforementioned problems to the set of instances in which all the segments have the same length are NP-hard. This result implies several NP-hardness results in the literature for variants and generalizations of the problems under consideration. We then study the parameterized complexity of the aforementioned problems. We provide tight results for most of them by showing that they are fixed-parameter tractable for the restrictions in which all the segments have the same length, and are W[1]-complete otherwise

    Complexity of the Steiner Network Problem with Respect to the Number of Terminals

    Get PDF
    In the Directed Steiner Network problem we are given an arc-weighted digraph GG, a set of terminals TV(G)T \subseteq V(G), and an (unweighted) directed request graph RR with V(R)=TV(R)=T. Our task is to output a subgraph GGG' \subseteq G of the minimum cost such that there is a directed path from ss to tt in GG' for all stA(R)st \in A(R). It is known that the problem can be solved in time V(G)O(A(R))|V(G)|^{O(|A(R)|)} [Feldman&Ruhl, SIAM J. Comput. 2006] and cannot be solved in time V(G)o(A(R))|V(G)|^{o(|A(R)|)} even if GG is planar, unless Exponential-Time Hypothesis (ETH) fails [Chitnis et al., SODA 2014]. However, as this reduction (and other reductions showing hardness of the problem) only shows that the problem cannot be solved in time V(G)o(T)|V(G)|^{o(|T|)} unless ETH fails, there is a significant gap in the complexity with respect to T|T| in the exponent. We show that Directed Steiner Network is solvable in time f(R)V(G)O(cgT)f(R)\cdot |V(G)|^{O(c_g \cdot |T|)}, where cgc_g is a constant depending solely on the genus of GG and ff is a computable function. We complement this result by showing that there is no f(R)V(G)o(T2/logT)f(R)\cdot |V(G)|^{o(|T|^2/ \log |T|)} algorithm for any function ff for the problem on general graphs, unless ETH fails
    corecore