689 research outputs found

    An auralisation method for real time subjective testing of modal parameters.

    Get PDF
    Subjective testing is necessary when attempting to determine the human response to audio quality. Small rooms, such as recording studio control rooms themselves have an effect upon the quality of the perceived audio reproduction. Of particular interest is the low frequency region where resonances, or ‘room modes’, occur. It is necessary to test a number of modal parameters individually and be able to alter them instantly during testing in response to listener perception. An auralisation method has been developed which is used to compare musical samples within modelled rooms. Methods are discussed in the context of providing a practical system, where real time testing is feasible. The formation of the room’s transfer function is discussed, as are a number of issues relating to the generation of audio samples. This work is then placed in context with a brief explanation of how the system is to be used in a real subjective test

    FDTD/K-DWM simulation of 3D room acoustics on general purpose graphics hardware using compute unified device architecture (CUDA)

    Get PDF
    The growing demand for reliable prediction of sound fields in rooms have resulted in adaptation of various approaches for physical modeling, including the Finite Difference Time Domain (FDTD) and the Digital Waveguide Mesh (DWM). Whilst considered versatile and attractive methods, they suffer from dispersion errors that increase with frequency and vary with direction of propagation, thus imposing a high frequency calculation limit. Attempts have been made to reduce such errors by considering different mesh topologies, by spatial interpolation, or by simply oversampling the grid. As the latter approach is computationally expensive, its application to three-dimensional problems has often been avoided. In this paper, we propose an implementation of the FDTD on general purpose graphics hardware, allowing for high sampling rates whilst maintaining reasonable calculation times. Dispersion errors are consequently reduced and the high frequency limit is increased. A range of graphics processors are evaluated and compared with traditional CPUs in terms of accuracy, calculation time and memory requirements

    Studies in modal density – its effect at low frequencies

    Get PDF
    The ability to objectively measure the reproduction quality of a small room at low frequencies has long been desired. Over many years, there have been attempts to produce recommendations, metrics, and criteria by which to define a particular room. These have often concentrated on some aspect of the modal distribution, such as spacing or density. Other attempts have focused upon the deviation from a desired frequency response. Whilst the subjective validity of objective measures such as these has often been questioned, the notion that a transitional region between a modal and diffuse sound fields exists, dependant on the room volume and reverberation time continues to permeate much thinking. The calculation of this transitional frequency relies on the calculation of a desired modal density. In the case of the most well known definition, the Schroeder Frequency1, the transitional frequency is that point where the density becomes sufficient that three modes lie within one bandwidth. Although this idea may well be useful in some instances, such as defining points for the use of statistical sound field analysis, recent thought has cast some doubt over its relevance as a subjective frequency above which we may ignore modal issues2. This paper highlights a number of studies along with a new listening test, which help us to better understand the role of modal density upon subjective perception of modal soundfields
    corecore