117 research outputs found

    MAP2 (microtubule-associated protein 2)

    Get PDF
    Review on MAP2 (microtubule-associated protein 2), with data on DNA, on the protein encoded, and where the gene is implicated

    Transcriptional regulation of human MAP2 gene in melanoma: role of neuronal bHLH factors and Notch1 signaling

    Get PDF
    Microtubule-associated protein 2 (MAP2), a neuron-specific protein, stabilizes microtubules and is critical for neurite outgrowth and dendrite development. Although MAP2 is widely used as a marker of neuronal differentiation, regulation of its transcription has not been investigated. We showed that MAP2 is frequently activated in human cutaneous melanoma. Here, we identified a 2.2 kb region that is sufficient for neuronal-specific expression in vitro and in vivo. Comparative analysis of the mouse, rat and human MAP2 promoter sequences showed the presence of a conserved bHLH factor binding sites. Electrophoretic mobility shift analysis, promoter mutagenesis and co-transfection experiments showed that NeuroD, a pro-neuronal differentiation factor, and Hairy and Enhancer of Split (HES1), a transcription repressor, are involved in the regulation of MAP2 promoter activity. Melanoma cells express both NeuroD and HES1. Chromatin immunoprecipitation showed that in metastatic melanoma cells N-box region of the MAP2 promoter is occupied by endogenous HES1. We show that the inhibition of Notch signaling, a regulator of HES1 gene expression, and/or shRNA knockdown of HES1 results in the upregulation of MAP2 promoter activity. Thus, our data suggest that Notch signaling, which is implicated in melanoma progression, and HES1 play a role in MAP2 gene regulation during melanoma progression

    Procedural feature generation for volumetric terrains using voxel grammars

    Get PDF
    © 2018 Terrain generation is a fundamental requirement of many computer graphics simulations, including computer games, flight simulators and environments in feature films. There has been a considerable amount of research in this domain, which ranges between fully automated and semi-automated methods. Voxel representations of 3D terrains can create rich features that are not found in other forms of terrain generation techniques, such as caves and overhangs. In this article, we introduce a semi-automated method of generating features for volumetric terrains using a rule-based procedural generation system. Features are generated by selecting subsets of a voxel grid as input symbols to a grammar, composed of user-created operators. This results in overhangs and caves generated from a set of simple rules. The feature generation runs on the CPU and the GPU is utilised to extract a robust mesh from the volumetric dataset

    Tyrosinase-Expressing Neuronal Cell Line as in Vitro Model of Parkinson’s Disease

    Get PDF
    Oxidized metabolites of dopamine known as dopamine quinone derivatives are thought to play a pivotal role in the degeneration of nigrostriatal dopaminergic neurons in Parkinson’s disease. Although such quinone derivatives are usually produced via the autoxidation of catecholamines, tyrosinase, which is a key enzyme in melanin biosynthesis via the production of DOPA and subsequent molecules, can potentially accelerate the induction of catecholamine quinone derivatives by its oxidase activity. We have developed neuronal cell lines in which the expression of human tyrosinase was inducible. Overexpression of tyrosinase resulted in increased intracellular dopamine content in association with the formation of melanin pigments in neuronal somata, which eventually causes apoptotic cell death. This cellular model will provide a useful tool for detailed analyses of the neurotoxicity of oxidized catechol metabolites

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Mutation in Archain 1, a Subunit of COPI Coatomer Complex, Causes Diluted Coat Color and Purkinje Cell Degeneration

    Get PDF
    Intracellular trafficking is critical for delivering molecules and organelles to their proper destinations to carry out normal cellular functions. Disruption of intracellular trafficking has been implicated in the pathogenesis of various neurodegenerative disorders. In addition, a number of genes involved in vesicle/organelle trafficking are also essential for pigmentation, and loss of those genes is often associated with mouse coat-color dilution and human hypopigmentary disorders. Hence, we postulated that screening for mouse mutants with both neurological defects and coat-color dilution will help identify additional factors associated with intracellular trafficking in neuronal cells. In this study, we characterized a mouse mutant with a unique N-ethyl-N-nitrosourea (ENU)–induced mutation, named nur17. nur17 mutant mice exhibit both coat-color dilution and ataxia due to Purkinje cell degeneration in the cerebellum. By positional cloning, we identified that the nur17 mouse carries a T-to-C missense mutation in archain 1 (Arcn1) gene which encodes the δ subunit of the coat protein I (COPI) complex required for intracellular trafficking. Consistent with this function, we found that intracellular trafficking is disrupted in nur17 melanocytes. Moreover, the nur17 mutation leads to common characteristics of neurodegenerative disorders such as abnormal protein accumulation, ER stress, and neurofibrillary tangles. Our study documents for the first time the physiological consequences of the impairment of the ARCN1 function in the whole animal and demonstrates a direct association between ARCN1 and neurodegeneration

    Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers

    Get PDF
    The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX). Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment. In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery
    • …
    corecore