4 research outputs found

    Potential of Lipid Core Peptide Technology as a Novel Self-Adjuvanting Vaccine Delivery System for Multiple Different Synthetic Peptide Immunogens

    Get PDF
    This study demonstrates the effectiveness of a novel self-adjuvanting vaccine delivery system for multiple different synthetic peptide immunogens by use of lipid core peptide (LCP) technology. An LCP formulation incorporating two different protective epitopes of the surface antiphagocytic M protein of group A streptococci (GAS)—the causative agents of rheumatic fever and subsequent rheumatic heart disease—was tested in a murine parenteral immunization and GAS challenge model. Mice were immunized with the LCP-GAS formulation, which contains an M protein amino-terminal type-specific peptide sequence (8830) in combination with a conserved non-host-cross-reactive carboxy-terminal C-region peptide sequence (J8) of the M protein. Our data demonstrated immunogenicity of the LCP-8830-J8 formulation in B10.BR mice when coadministered in complete Freund's adjuvant and in the absence of a conventional adjuvant. In both cases, immunization led to induction of high-titer GAS peptide-specific serum immunoglobulin G antibody responses and induction of highly opsonic antibodies that did not cross-react with human heart tissue proteins. Moreover, mice were completely protected from GAS infection when immunized with LCP-8830-J8 in the presence or absence of a conventional adjuvant. Mice were not protected, however, following immunization with an LCP formulation containing a control peptide from a Schistosoma sp. These data support the potential of LCP technology in the development of novel self-adjuvanting multi-antigen component vaccines and point to the potential application of this system in the development of human vaccines against infectious diseases

    A Lipid Core Peptide Construct Containing a Conserved Region Determinant of the Group A Streptococcal M Protein Elicits Heterologous Opsonic Antibodies

    Get PDF
    The study reported here investigated the immunogenicity and protective potential of a lipid core peptide (LCP) construct containing a conserved region determinant of M protein, defined as peptide J8. Parenteral immunization of mice with LCP-J8 led to the induction of high-titer serum immunoglobulin G J8-specific antibodies when the construct was coadministered with complete Freund's adjuvant (CFA) or administered alone. LCP-J8 in CFA had significantly enhanced immunogenicity compared with the monomeric peptide J8 given in CFA. Moreover, LCP-J8/CFA and LCP-J8 antisera opsonized four different group A streptococcal (GAS) strains, and the antisera did not cross-react with human heart tissue proteins. These data indicate the potential of an LCP-based M protein conserved region GAS vaccine in the induction of broadly protective immune responses in the absence of a conventional adjuvant

    A lipophilic adjuvant carrier system for antigenic peptides

    No full text
    A lipoamino acid based synthetic peptide, (Lipid Core Peptide, LCP) derived from the conserved region of group A streptococci (GAS) was evaluated as potential candidate in a vaccine to prevent GAS-associated diseases, including rheumatic heart disease and post-streptococcal acute glomerulonephritis. Multiple copies of a peptide sequence from the bacterial surface M protein were incorporated into a lipid core and it was used to immunize mice with and without the application of adjuvant. The LCP construct had significantly enhanced immunogenicity compared with the monomeric peptide epitope. Furthermore, the peptides incorporated into the LCP system generated antibodies without the use of any conventional adjuvant

    References

    No full text
    corecore