1,078 research outputs found

    AlterBBN: A program for calculating the BBN abundances of the elements in alternative cosmologies

    Full text link
    We describe AlterBBN, a public C program for evaluating the abundances of the elements generated by Big-Bang nucleosynthesis (BBN). This program enables the user to compute the abundances of the elements in the standard model of cosmology, and additionally provides possibilities to alter the assumptions of the cosmological model in order to study their consequences on the abundances of the elements. In particular the baryon-to-photon ratio and the effective number of neutrinos, as well as the expansion rate and the entropy content of the Universe during BBN can be modified in AlterBBN. Such features allow the user to test the cosmological models by confronting them to BBN constraints. A presentation of the physics of BBN and the features of AlterBBN is provided here under the form of a manual.Comment: 15 pages, 1 figure, 1 table. AlterBBN can be obtained from https://alterbbn.hepforge.org

    Unifying dark energy and dark matter with a scalar field

    Full text link
    The standard model of cosmology considers the existence of two components of unknown nature, ``dark matter'' and ``dark energy'', which determine the cosmological evolution. Their nature remains unknown, and other models can also be considered. In particular, it may be possible to reinterpret the recent cosmological observations so that the Universe does not contain two fluids of unknown natures, but only one fluid with particular properties. After a brief review of constraints on this unifying ``dark fluid'', we will discuss a specific model of dark fluid based on a complex scalar fluid.Comment: 4 pages, 4 figures, to appear in the XXIst IAP Colloquium "Mass Profiles and Shapes of Cosmological Structures", Paris 4-9 July 2005, France, (Eds.) G. Mamon, F. Combes, C. Deffayet, B. Fort, EAS Publications Serie

    The Higgs boson, Supersymmetry and Dark Matter: Relations and Perspectives

    Full text link
    The discovery of a light Higgs boson at the LHC opens a broad program of studies and measurements to understand the role of this particle in connection with New Physics and Cosmology. Supersymmetry is the best motivated and most thoroughly formulated and investigated model of New Physics which predicts a light Higgs boson and can explain dark matter. This paper discusses how the study of the Higgs boson connects with the search for supersymmetry and for dark matter at the LHC and at a future e+ee^+e^- collider and with dedicated underground dark matter experiments.Comment: 7 pages, 5 figure

    Dark Energy vs. Dark Matter: Towards a Unifying Scalar Field?

    Full text link
    The standard model of cosmology suggests the existence of two components, "dark matter" and "dark energy", which determine the fate of the Universe. Their nature is still under investigation, and no direct proof of their existences has emerged yet. There exist alternative models which reinterpret the cosmological observations, for example by replacing the dark energy/dark matter hypothesis by the existence of a unique dark component, the dark fluid, which is able to mimic the behaviour of both components. After a quick review of the cosmological constraints on this unifying dark fluid, we will present a model of dark fluid based on a complex scalar field and discuss the problem of the choice of the potential.Comment: 6 pages, 2 figures, contribution to the proceedings of the July 2008 CRAL-IPNL conference "Dark Energy and Dark Matter

    LHC and ILC Data and the Early Universe Properties

    Get PDF
    With the start-up of the LHC, we can hope to find evidences for new physics beyond the Standard Model, and particle candidates for dark matter. Determining the parameters of the full underlying theory will be a long process requiring the combination of LHC and ILC data, flavor physics constraints, and cosmological observations. However, the Very Early Universe properties, from which the relic particles originate, are poorly known, and the relic density calculation can be easily falsified by hidden processes. We consider supersymmetry and show that determining the underlying particle physics parameters will help understanding the Very Early Universe properties.Comment: 6 pages, 2 figures, contribution to the proceedings of the workshop "LC09: e+e- Physics at the TeV Scale and the Dark Matter Connection", Perugia, September 21 - 24, 2009, Italy. v2: reference adde

    Relic density and future colliders: inverse problem(s)

    Full text link
    Relic density calculations are often used to constrain particle physics models, and in particular supersymmetry. We will show that the presence of additional energy or entropy before the Big-Bang nucleosynthesis can however completely change the relic density constraints on the SUSY parameter space. Therefore one should be extremely careful when using the relic density to constrain supersymmetry as it could give misleading results, especially if combined with the future collider data. Alternatively, we will also show that combining the discoveries of the future colliders with relic density calculations can shed light on the inaccessible pre-BBN dark time physics. Finally we will present SuperIso Relic, a new relic density calculator code in Supersymmetry, which incorporates alternative cosmological models, and is publicly available.Comment: 8 pages, 5 figures, contribution to the proceedings of the conference "Invisible Universe", Paris, June 29 - July 3, 2009, Franc

    Complementarity of direct and indirect searches in the pMSSM

    Full text link
    We explore the pMSSM parameter space in view of the constraints from SUSY and monojet searches at the LHC, from Higgs data and flavour physics observables, as well as from dark matter searches. We show that whilst the simplest SUSY scenarios are already ruled out, there are still many possibilities left over in the pMSSM. We discuss the complementarity between different searches and consistency checks which are essential in probing the pMSSM and will be even more important in the near future with the next round of data becoming available.Comment: 6 pages, 9 figures. Contribution to the proceedings of the Fifth Capri Workshop on the interplay of flavour physics with electroweak symmetry breaking and dark matter, Capri, May 201

    Light neutralino dark matter in MSSM

    Full text link
    Three dark matter direct detection experiments, DAMA, COGENT and CRESST, have reported a possible signal of WIMP interaction corresponding to very light particles, close to the edge of the XENON 100 and CDMS sensitivity. Imposing the latest constraints from colliders, flavour physics, electroweak precision tests and direct and indirect dark matter searches, we show that viable MSSM scenarios with a light neutralino, in agreement with all the present data, are feasible. An analysis of the characteristics of the resulting scenarios will be presented.Comment: 6 pages, 2 figures, contribution to the ICHEP 2012 Conference proceedings, 4-11 July 2012, Melbourne, Australi

    Supersymmetry with Light Dark Matter confronting the recent CDMS and LHC Results

    Full text link
    We revisit MSSM scenarios with light neutralino as a dark matter candidate in view of the latest LHC and dark matter direct and indirect detection experiments. We show that scenarios with a very light neutralino (~ 10 GeV) and a scalar bottom quark close in mass, can satisfy all the available constraints from LEP, Tevatron, LHC, flavour and low energy experiments and provide solutions in agreement with the bulk of dark matter direct detection experiments, and in particular with the recent CDMS results.Comment: v2: 11 pages, 9 figures; extended study of mono-jet constraints, revised references. Two benchmark SLHA files provide
    corecore