97 research outputs found

    A High-Light Sensitivity Optical Neural Silencer: Development and Application to Optogenetic Control of Non-Human Primate Cortex

    Get PDF
    Technologies for silencing the electrical activity of genetically targeted neurons in the brain are important for assessing the contribution of specific cell types and pathways toward behaviors and pathologies. Recently we found that archaerhodopsin-3 from Halorubrum sodomense (Arch), a light-driven outward proton pump, when genetically expressed in neurons, enables them to be powerfully, transiently, and repeatedly silenced in response to pulses of light. Because of the impressive characteristics of Arch, we explored the optogenetic utility of opsins with high sequence homology to Arch, from archaea of the Halorubrum genus. We found that the archaerhodopsin from Halorubrum strain TP009, which we named ArchT, could mediate photocurrents of similar maximum amplitude to those of Arch (∼900 pA in vitro), but with a >3-fold improvement in light sensitivity over Arch, most notably in the optogenetic range of 1–10 mW/mm2, equating to >2× increase in brain tissue volume addressed by a typical single optical fiber. Upon expression in mouse or rhesus macaque cortical neurons, ArchT expressed well on neuronal membranes, including excellent trafficking for long distances down neuronal axons. The high light sensitivity prompted us to explore ArchT use in the cortex of the rhesus macaque. Optical perturbation of ArchT-expressing neurons in the brain of an awake rhesus macaque resulted in a rapid and complete (∼100%) silencing of most recorded cells, with suppressed cells achieving a median firing rate of 0 spikes/s upon illumination. A small population of neurons showed increased firing rates at long latencies following the onset of light stimulation, suggesting the existence of a mechanism of network-level neural activity balancing. The powerful net suppression of activity suggests that ArchT silencing technology might be of great use not only in the causal analysis of neural circuits, but may have therapeutic applications

    Improving STEM Education in Research: Preliminary Report on the Development of a Computer-Assisted Student-Mentor Research Community

    Get PDF
    Research education in STEM disciplines currently suffers from 1) The inability to feasibly collect highly detailed data on both the student’s and mentor’s activities; 2) The lack of tools to assist students and mentors in organizing and managing their research activities and environments; and 3) The inability to correlate a student’s assessment results with their actual research activities. Together these three problems act to impede both the improvement and educational quality of student research experiences. We propose a computer-assisted student-mentor research community as a solution to these problems. Within this community setting, students and their mentors are provided tools to make their work easier, much like a word processor makes writing a letter easier. Through their use of these tools, details of student-mentor activities are automatically recorded in a relational database, without burdening users with the responsibility of archiving data. Equally important, student assessments of outcome can be directly related to student activity, allowing educators to identify practices resulting in successful research experiences. Community tools also facilitate the use of labor-intensive teaching laboratories involving real inquiry-based research. The community structure has the added benefit of allowing students to see, communicate and interact more freely with other students and their projects, thus enriching the student’s research experience. We provide herein a preliminary report on the development and testing of a prototype, student-mentor research community, and present its tools, an assessment of student interest in participating in the community, and discuss its further development into a nationally-available student-mentor research community

    Contrasting Expression of Canonical Wnt Signaling Reporters TOPGAL, BATGAL and Axin2LacZ during Murine Lung Development and Repair

    Get PDF
    Canonical Wnt signaling plays multiple roles in lung organogenesis and repair by regulating early progenitor cell fates: investigation has been enhanced by canonical Wnt reporter mice, TOPGAL, BATGAL and Axin2LacZ. Although widely used, it remains unclear whether these reporters convey the same information about canonical Wnt signaling. We therefore compared beta-galactosidase expression patterns in canonical Wnt signaling of these reporter mice in whole embryo versus isolated prenatal lungs. To determine if expression varied further during repair, we analyzed comparative pulmonary expression of beta-galactosidase after naphthalene injury. Our data show important differences between reporter mice. While TOPGAL and BATGAL lines demonstrate Wnt signaling well in early lung epithelium, BATGAL expression is markedly reduced in late embryonic and adult lungs. By contrast, Axin2LacZ expression is sustained in embryonic lung mesenchyme as well as epithelium. Three days into repair after naphthalene, BATGAL expression is induced in bronchial epithelium as well as TOPGAL expression (already strongly expressed without injury). Axin2LacZ expression is increased in bronchial epithelium of injured lungs. Interestingly, both TOPGAL and Axin2LacZ are up regulated in parabronchial smooth muscle cells during repair. Therefore the optimal choice of Wnt reporter line depends on whether up- or down-regulation of canonical Wnt signal reporting in either lung epithelium or mesenchyme is being compared

    Anti–miR-93-5p therapy prolongs sepsis survival by restoring the peripheral immune response

    Get PDF
    Sepsis remains a leading cause of death for humans and currently has no pathogenesis-specific therapy. Hampered progress is partly due to a lack of insight into deep mechanistic processes. In the past decade, deciphering the functions of small noncoding miRNAs in sepsis pathogenesis became a dynamic research topic. To screen for new miRNA targets for sepsis therapeutics, we used samples for miRNA array analysis of PBMCs from patients with sepsis and control individuals, blood samples from 2 cohorts of patients with sepsis, and multiple animal models: mouse cecum ligation puncture–induced (CLP-induced) sepsis, mouse viral miRNA challenge, and baboon Gram+ and Gram– sepsis models. miR-93-5p met the criteria for a therapeutic target, as it was overexpressed in baboons that died early after induction of sepsis, was downregulated in patients who survived after sepsis, and correlated with negative clinical prognosticators for sepsis. Therapeutically, inhibition of miR-93-5p prolonged the overall survival of mice with CLP-induced sepsis, with a stronger effect in older mice. Mechanistically, anti–miR-93-5p therapy reduced inflammatory monocytes and increased circulating effector memory T cells, especially the CD4+ subset. AGO2 IP in miR-93–KO T cells identified important regulatory receptors, such as CD28, as direct miR-93-5p target genes. In conclusion, miR-93-5p is a potential therapeutic target in sepsis through the regulation of both innate and adaptive immunity, with possibly a greater benefit for elderly patients than for young patients

    Paleocene methane seep and wood-fall marine environments from Spitsbergen, Svalbard

    Get PDF
    A recently discovered Paleocene seep locality from Fossildalen on Spitsbergen, Svalbard, is described. This is one of a very few seep communities of the latest Cretaceous–earliest Palaeogene age, and the best preserved Paleocene seep community known so far. The seep carbonates and associated fossils have been first identified in museum collections, and subsequently sampled in the field. The carbonates are exclusively ex-situ and come from the offshore siltstones of the Basilika Formation. Isotopically light composition (δ13C values approaching -50‰ V-PDB), and characteristic petrographic textures of the carbonates combined with the isotopically light archaeal lipid are consistent with the formation at fossil hydrocarbon seep. The invertebrate fauna associated with the carbonates is of moderate diversity (16 species) and has a shallow water affinity. It contains a species of the thyasirid genus Conchocele, common in other seeps of that age. The finding sheds new light onto the history of seepage on Svalbard, and onto the evolution and ecology of seep faunas during the latest Cretaceous–earliest Palaeogene time interval

    2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.

    Get PDF
    S

    withdrawn 2017 hrs ehra ecas aphrs solaece expert consensus statement on catheter and surgical ablation of atrial fibrillation

    Get PDF
    n/

    2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.

    Get PDF
    S
    • …
    corecore