9 research outputs found

    Scaffold proteins LACK and TRACK as potential drug targets in kinetoplastid parasites: Development of inhibitors

    Get PDF
    Parasitic diseases cause similar to 500,000 deaths annually and remain a major challenge for therapeutic development. Using a rational design based approach, we developed peptide inhibitors with anti-parasitic activity that were derived from the sequences of parasite scaffold proteins LACK (Leishmania's receptor for activated C-kinase) and TRACK (Trypanosoma receptor for activated C-kinase). We hypothesized that sequences in LACK and TRACK that are conserved in the parasites, but not in the mammalian ortholog, RACK (Receptor for activated C-kinase), may be interaction sites for signaling proteins that are critical for the parasites' viability. One of these peptides exhibited leishmanicidal and trypanocidal activity in culture. Moreover, in infected mice, this peptide was also effective in reducing parasitemia and increasing survival without toxic effects. The identified peptide is a promising new anti-parasitic drug lead, as its unique features may limit toxicity and drug-resistance, thus overcoming central limitations of most anti-parasitic drugs. (C) 2016 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology.National Institutes of HealthStanford Univ, Sch Med, Dept Chem & Syst Biol, Stanford, CA 94305 USAUniv Sao Paulo, Inst Quim, Dept Bioquim, BR-05508 Sao Paulo, SP, BrazilMcGill Univ, Res Inst, Natl Reference Ctr Parasitol, Montreal, PQ, CanadaUniv Autonoma Yucatan, Ctr Invest Reg Dr Hideyo Noguchi, Parasitol Lab, Merida, Yucatan, MexicoStanford Univ, Biomat & Adv Drug Delivery Lab, Stanford, CA 94305 USAUniv Estadual Campinas, Inst Chem, Campinas, SP, BrazilUniv Fed Sao Paulo, Dept Ciencias Biol, Campus Diadema, Sao Paulo, BrazilMcGill Univ, Inst Parasitol, Quebec City, PQ, CanadaMcGill Univ, Ctr Host Parasite Interact, Quebec City, PQ, CanadaUniv Fed Sao Paulo, Dept Ciencias Biol, Campus Diadema, Sao Paulo, BrazilNIH: TW008781-01C-IDEANIH: AI078505Web of Scienc

    Epidemiology and pathogenesis of maternal-fetal transmission of Trypanosoma cruzi and a case for vaccine development against congenital Chagas disease

    Get PDF
    Trypanos o ma cruzi (T. cruzi or Tc) is the causative agent of Chagas disease (CD). It is common for patients to suffer from non-specific symptoms or be clinically asymptomatic with acute and chronic conditions acquired through various routes of transmission. The expecting women and their fetuses are vulnerable to congenital transmission of Tc. Pregnant women face formidable health challenges because the frontline antiparasitic drugs, benznidazole and nifurtimox, are contraindicated during pregnancy. However, it is worthwhile to highlight that newborns can be cured if they are diagnosed and given treatment in a timely manner. In this review, we discuss the pathogenesis of maternal-fetal transmission of Tc and provide a justification for the investment in the development of vaccines against congenital CD.Fil: Rios, Lizette. University of Texas Medical Branch; Estados UnidosFil: Campos, Emiliano Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Patología Experimental. Universidad Nacional de Salta. Facultad de Ciencias de la Salud. Instituto de Patología Experimental; ArgentinaFil: Menon, Ramkumar. University of Texas Medical Branch; Estados UnidosFil: Zago, María Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Patología Experimental. Universidad Nacional de Salta. Facultad de Ciencias de la Salud. Instituto de Patología Experimental; ArgentinaFil: Garg, Nisha J.. University of Texas Medical Branch; Estados Unido

    Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: implications for triatomine behavior and Trypanosoma cruzi transmission cycles

    No full text
    Trypanosoma cruzi is the agent of Chagas disease, transmitted by hematophagous triatomine vectors. Establishing transmission cycles is key to understand the epidemiology of the disease, but integrative assessments of ecological interactions shaping parasite transmission are still limited. Current approaches also lack sensitivity to assess the full extent of this ecological diversity. Here we developed a metabarcoding approach based on next-generation sequencing to identify triatomine gut microbiome, vertebrate feeding hosts, and parasite diversity and their potential interactions. We detected a dynamic microbiome in Triatoma dimidiata, including 23 bacterial orders, which differed according to blood sources. Fourteen vertebrate species served as blood sources, corresponding to domestic, synantropic and sylvatic species, although four (human, dog, cow and mice) accounted for over 50% of blood sources. Importantly, bugs fed on multiple hosts, with up to 11 hosts identified per bug, indicating very frequent host-switching. A high clonal diversity of T. cruzi was detected, with up to 20 haplotypes per bug. This analysis provided much greater sensitivity to detect multiple blood meals and multiclonal infections with T. cruzi, which should be taken into account to develop transmission networks, and characterize the risk for human infection, eventually leading to a better control of disease transmission

    A novel multi-epitope recombinant protein elicits an antigen-specific CD8+ T cells response in Trypanosoma cruzi-infected mice

    Get PDF
    About 6.5 million people worldwide are afflicted by Chagas disease, which is caused by the protozoan parasite Trypanosoma cruzi. The development of a therapeutic vaccine to prevent the progression of Chagasic cardiomyopathy has been proposed as an alternative for antiparasitic chemotherapy. Bioinformatics tools can predict MHC class I CD8 + epitopes for inclusion in a single recombinant protein with the goal to develop a multivalent vaccine. We expressed a novel recombinant protein Tc24-C4.10E harboring ten nonameric CD8 + epitopes and using Tc24-C4 protein as scaffold to evaluate the therapeutic effect in acute T. cruzi infection. T. cruzi-infected mice were immunized with Tc24-C4.10E or Tc24-C4 in a 50-day model of acute infection. Tc24-C4.10E-treated mice showed a decreased parasitemia compared to the Tc24-C4 (non-adjuvant) immunized mice or control group. Moreover, Tc24-C4.10E induced a higher stimulation index of CD8 + T cells producing IFNγ and IL-4 cytokines. These results suggest that the addition of the MHC Class I epitopes to Tc24-C4 can synergize the antigen-specific cellular immune responses, providing proof-of-concept that this approach could lead to the development of a promising vaccine candidate for Chagas disease

    Epidemiology and pathogenesis of maternal-fetal transmission of Trypanosoma cruzi and a case for vaccine development against congenital Chagas disease

    No full text

    The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges

    No full text
    corecore