254 research outputs found

    Analyse struktureller Determinanten der toxischen Wirkung amyloider Proteine

    Get PDF
    Ein lebender Organismus ist unter anderem durch seine Fähigkeit zum präzisen Auf- und Zusammenbau höherer molekularer Strukturen charakterisiert, wobei die Faltung und Assemblierung von Proteinen eine bedeutende Rolle spielt. Die Proteinfaltung wird durch molekulare Chaperone unterstützt und optimiert, bis ein Protein seine native, biologisch funktionelle Struktur eingenommen hat. Durch exogene Einflüsse oder endogene Veränderungen eines Proteins, z.B. bei neurodegenerativen Erkrankungen wie M. Alzheimer, M. Parkinson oder Chorea Huntington, oder des gesamten Proteinnetzwerkes, kann Proteinfehlfaltung, Aggregation und die Ausbildung amyloider Strukturen, verbunden mit Zytotoxizität, auftreten. Die zur Fehlfaltung und Bildung ähnlicher amyloider Aggregate führenden strukturellen Determinanten der Zytotoxizität, verursacht durch Proteine unterschiedlicher Primärstruktur und Länge, sind nur unzureichend erforscht. Eine Hypothese besagt, dass lösliche intermediäre Oligomere der aggregierenden Proteine die toxische Spezies in einem wahrscheinlich multifunktionellen pathogenen Geschehen darstellen. Es gibt Hinweise, dass eine zusammenbrechende Proteostase verbunden mit einer zu geringeren Kapazität molekularer Chaperone zu den deletären Effekten führt. Auch ist nicht abschließend geklärt, ob und zu welchem Anteil die Toxizität durch Aggregation des Proteins und damit verbundener erhöhter Pathogenität bedingt ist, oder inwieweit durch einen Funktionsverlust des fehlgefalteten Proteins selbst. Um zytotoxische Effekte in humanen Zellen zu analysieren, wurden de novo generierte beta-Faltblattproteine untersucht, welche durch Aggregation in der Zelle keine Autofunktionsstörung auslösen sollten. Es wurde gezeigt, dass diese artifiziellen Proteine in HEK293T-Zellen amyloide Aggregate bildeten und zytotoxisch wirkten, im Vergleich zu de novo generierten alpha-helikalen Proteinen, welche löslich und homogen in der Zelle verteilt vorlagen und nahezu keine Zytotoxizität aufwiesen. Drei aus einer kombinatorischen Bibliothek ausgewählte de novo amyloide Proteine, beta4, beta17 und beta23, waren zytotoxisch mit der Gradierung beta4 < beta17 < beta23, sie induzierten Apoptose und veränderten die Zellmorphologie. Die Zytotoxizität korrelierte mit vorhandenen präfibrillären, intermediären Oligomeren. Die Proteine beeinträchtigten die Rückfaltung von GFP-Luciferase in gleicher Abstufung, ebenso eine Induktion der Stressantwort und die Proteinbiogenese. Die Aggregate colokalisierten mit GFP-Luciferase, jedoch nicht mit GFP. Eine massenspektrometrische Untersuchung der Interaktionspartner der drei de novo amyloiden Proteine in Kombination mit SILAC und Co-IP wies Interaktionen mit metastabilen Proteinen essentieller zellulärer Funktionen nach, dabei wurde Hsp110 als stark angereichertes Chaperon unter den Interaktoren identifiziert. Eine Überexpression von Hsp110 verminderte die Zytotoxizität der de novo Proteine beta4 und beta17, jedoch nicht beta23. Hsp110 war ebenfalls in der Lage, Aggregate teilweise zu solubilisieren und eine normalisierte Zellmorphologie wieder herzustellen. Um einen beta-Strang verkürzte oder verlängerte Mutanten der semitoxischen beta-Faltblattproteine beta4 und beta17 wiesen eine erhöhte Zytotoxizität auf, so dass wahrscheinlich generell beta-Faltblattproteine mit einer ungeraden Anzahl an beta-Strängen toxischer sind als ihre Derivate mit gerader Anzahl an beta-Strängen, da ungepaarte reaktive beta-Stränge vorliegen dürften. Zusammenfassend stellen die de novo beta-Faltblattproteine ein attraktives Modell dar, um aggregierende, amyloide Proteine ohne biologische Funktion in vivo zu untersuchen. Inkubation humaner Zellen mit dem Prolin-Analogon Azetidin-2-carbonsäure führte in Anwesenheit eines proteasomalen Inhibitors zur Verstärkung der Zytotoxizität, es entstanden amyloide Aggregate und präfibrilläre Intermediate, so dass die Hypothese der Verstärkung von Funktion und Pathogenität durch Aggregation in diesem System weiter untermauert wurde. Expression von Huntingtin mit expandierter PolyQ-Sequenz und einem angefügten hydrophoben CL1-Degron führte zu einer Erhöhung der Löslichkeit, zu verstärkter Inhibition des Ubiquitin-Proteasom-Systems und zu erhöhter Zytotoxitzität im Vergleich zu expandiertem Huntingtin ohne CL1-Degron. Die Zytotoxizität des mit Degron versehenen Huntingtins konnte mittels Überexpression von expandiertem Huntingtin ohne Degron durch Coaggregation verringert werden. Die Ergebnisse sprechen für die Hypothesen, dass präfibrilläre Intermediate die maßgeblichen zytotoxischen Spezies darstellen, während große Aggregate eine protektive Funktion einnehmen können. Eine Überexpression fehlfaltender Proteine kann in multifaktorieller Weise zur Interaktion mit essentiellen zellulären Proteinen führen und die Funktion metastabiler Proteine beeinträchtigen, was u.a. im Falle der de novo amyloiden Proteine zur Inhibition der Proteinbiogenese und der HSR führt. Akkumulation endogener fehlgefalteter Proteine durch proteasomale Inhibition legt den Mechanismus einer Verstärkung der Zytotoxizität durch amyloide, aggregierende Proteine per se nahe

    Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions

    Get PDF
    Protein aggregation is linked with neurodegeneration and numerous other diseases by mechanisms that are not well understood. Here, we have analyzed the gain-of-function toxicity of artificial β sheet proteins that were designed to form amyloid-like fibrils. Using quantitative proteomics, we found that the toxicity of these proteins in human cells correlates with the capacity of their aggregates to promote aberrant protein interactions and to deregulate the cytosolic stress response. The endogenous proteins that are sequestered by the aggregates share distinct physicochemical properties: They are relatively large in size and significantly enriched in predicted unstructured regions, features that are strongly linked with multifunctionality. Many of the interacting proteins occupy essential hub positions in cellular protein networks, with key roles in chromatin organization, transcription, translation, maintenance of cell architecture and protein quality control. We suggest that amyloidogenic aggregation targets a metastable subproteome, thereby causing multifactorial toxicity and, eventually, the collapse of essential cellular functions. PaperFlick: © 2011 Elsevier Inc

    Meta-structure correlation in protein space unveils different selection rules for folded and intrinsically disordered proteins

    Get PDF
    The number of existing protein sequences spans a very small fraction of sequence space. Natural proteins have overcome a strong negative selective pressure to avoid the formation of insoluble aggregates. Stably folded globular proteins and intrinsically disordered proteins (IDP) use alternative solutions to the aggregation problem. While in globular proteins folding minimizes the access to aggregation prone regions IDPs on average display large exposed contact areas. Here, we introduce the concept of average meta-structure correlation map to analyze sequence space. Using this novel conceptual view we show that representative ensembles of folded and ID proteins show distinct characteristics and responds differently to sequence randomization. By studying the way evolutionary constraints act on IDPs to disable a negative function (aggregation) we might gain insight into the mechanisms by which function - enabling information is encoded in IDPs

    4-Phenylbutyric acid treatment rescues trafficking and processing of a mutant surfactant protein C

    Get PDF
    Mutations in the SFTPC gene, encoding surfactant protein–C (SP-C), are associated with interstitial lung disease (ILD). Knowledge of the intracellular fate of mutant SP-C is essential in the design of therapies to correct trafficking/processing of the proprotein, and to prevent the formation of cytotoxic aggregates. We assessed the potential of a chemical chaperone to correct the trafficking and processing of three disease-associated mutant SP-C proteins. HEK293 cells were stably transfected with wild-type (SP-C(WT)) or mutant (SP-C(L188Q), SP-C(Δexon4), or SP-C(I73T)) SP-C, and cell lines with a similar expression of SP-C mRNA were identified. The effects of the chemical chaperone 4-phenylbutyric acid (PBA) and lysosomotropic drugs on intracellular trafficking to the endolysosomal pathway and the subsequent conversion of SP-C proprotein to mature peptide were assessed. Despite comparable SP-C mRNA expression, proprotein concentrations varied greatly: SP-C(I73T) was more abundant than SP-C(WT) and was localized to the cell surface, whereas SP-C(Δexon4) was barely detectable. In contrast, SP-C(L188Q) and SP-C(WT) proprotein concentrations were comparable, and a small amount of SP-C(L188Q) was localized to the endolysosomal pathway. PBA treatment restored the trafficking and processing of SP-C(L188Q) to SP-C(WT) concentrations, but did not correct the mistrafficking of SP-C(I73T) or rescue SP-C(Δexon4). PBA treatment also promoted the aggregation of SP-C proproteins, including SP-C(L188Q). This study provides proof of the principle that a chemical chaperone can correct the mistrafficking and processing of a disease-associated mutant SP-C proprotein

    An intrinsically disordered yeast prion arrests the cell cycle by sequestering a spindle pole body component

    Get PDF
    Intrinsically disordered proteins play causative roles in many human diseases. Their overexpression is toxic in many organisms, but the causes of toxicity are opaque. In this paper, we exploit yeast technologies to determine the root of toxicity for one such protein, the yeast prion Rnq1. This protein is profoundly toxic when overexpressed but only in cells carrying the endogenous Rnq1 protein in its [RNQ[superscript +]] prion (amyloid) conformation. Surprisingly, toxicity was not caused by general proteotoxic stress. Rather, it involved a highly specific mitotic arrest mediated by the Mad2 cell cycle checkpoint. Monopolar spindles accumulated as a result of defective duplication of the yeast centrosome (spindle pole body [SPB]). This arose from selective Rnq1-mediated sequestration of the core SPB component Spc42 in the insoluble protein deposit (IPOD). Rnq1 does not normally participate in spindle pole dynamics, but it does assemble at the IPOD when aggregated. Our work illustrates how the promiscuous interactions of an intrinsically disordered protein can produce highly specific cellular toxicities through illicit, yet highly specific, interactions with the proteome

    Bacterial curli protein promotes the conversion of PAP248-286 into the amyloid SEVI: cross-seeding of dissimilar amyloid sequences

    Get PDF
    Fragments of prostatic acid phosphatase (PAP248-286) in human semen dramatically increase HIV infection efficiency by increasing virus adhesion to target cells. PAP248-286 only enhances HIV infection in the form of amyloid aggregates termed SEVI (Semen Enhancer of Viral Infection), however monomeric PAP248-286 aggregates very slowly in isolation. It has therefore been suggested that SEVI fiber formation in vivo may be promoted by exogenous factors. We show here that a bacterially-produced extracellular amyloid (curli or Csg) acts as a catalytic agent for SEVI formation from PAP248-286 at low concentrations in vitro, producing fibers that retain the ability to enhance HIV (Human Immunodeficiency Virus) infection. Kinetic analysis of the cross-seeding effect shows an unusual pattern. Cross-seeding PAP248-286 with curli only moderately affects the nucleation rate while significantly enhancing the growth of fibers from existing nuclei. This pattern is in contrast to most previous observations of cross-seeding, which show cross-seeding partially bypasses the nucleation step but has little effect on fiber elongation. Seeding other amyloidogenic proteins (IAPP (islet amyloid polypeptide) and Aβ1−40) with curli showed varied results. Curli cross-seeding decreased the lag-time of IAPP amyloid formation but strongly inhibited IAPP elongation. Curli cross-seeding exerted a complicated concentration dependent effect on Aβ1−40 fibrillogenesis kinetics. Combined, these results suggest that the interaction of amyloidogenic proteins with preformed fibers of a different type can take a variety of forms and is not limited to epitaxial nucleation between proteins of similar sequence. The ability of curli fibers to interact with proteins of dissimilar sequences suggests cross-seeding may be a more general phenomenon than previously supposed

    Intrabody-mediated diverting of HP1β to the cytoplasm induces co-aggregation of H3-H4 histones and lamin-B receptor

    Get PDF
    Diverting a protein from its intracellular location is a unique property of intrabodies. To interfere with the intracellular traffic of heterochromatin protein 1β (HP1β) in living cells, we have generated a cytoplasmic targeted anti-HP1β intrabody, specifically directed against the C-terminal portion of the molecule. HP1β is a conserved component of mouse and human constitutive heterochromatin involved in diverse nuclear functions including gene silencing, DNA repair and nuclear membrane assembly. We found that the anti-HP1β intrabody sequesters HP1β into cytoplasmic aggregates, inhibiting its traffic to the nucleus. Lamin B receptor (LBR) and a subset of core histones (H3/H4) are also specifically co-sequestered in the cytoplasm of anti-HP1β intrabody-expressing cells. Methylated histone H3 at K9 (Me9H3), a marker of constitutive heterochromatin, is not affected by the anti-HP1β intrabody expression. Hyper-acetylating conditions completely dislodge H3 from HP1β:LBR containing aggregates. The expression of anti-HP1β scFv fragments induces apoptosis, associated with an alteration of nuclear morphology. Both these phenotypes are specifically rescued either by overexpression of recombinant full length HP1β or by HP1β mutant containing the chromoshadow domain, but not by recombinant LBR protein. The HP1β-chromodomain mutant, on the other hand, does not rescue the phenotypes, but does compete with LBR for binding to HP1β. These findings provide new insights into the mode of action of cytoplasmic-targeted intrabodies and the interaction between HP1β and its binding partners involved in peripheral heterochromatin organisation

    The Molecular Assembly of Amyloid Aβ Controls Its Neurotoxicity and Binding to Cellular Proteins

    Get PDF
    Accumulation of β-sheet-rich peptide (Aβ) is strongly associated with Alzheimer's disease, characterized by reduction in synapse density, structural alterations of dendritic spines, modification of synaptic protein expression, loss of long-term potentiation and neuronal cell death. Aβ species are potent neurotoxins, however the molecular mechanism responsible for Aβ toxicity is still unknown. Numerous mechanisms of toxicity were proposed, although there is no agreement about their relative importance in disease pathogenesis. Here, the toxicity of Aβ 1–40 and Aβ 1–42 monomers, oligomers or fibrils, was evaluated using the N2a cell line. A structure-function relationship between peptide aggregation state and toxic properties was established. Moreover, we demonstrated that Aβ toxic species cross the plasma membrane, accumulate in cells and bind to a variety of internal proteins, especially on the cytoskeleton and in the endoplasmatic reticulum (ER). Based on these data we suggest that numerous proteins act as Aβ receptors in N2a cells, triggering a multi factorial toxicity

    αA-Crystallin Peptide 66SDRDKFVIFLDVKHF80 Accumulating in Aging Lens Impairs the Function of α-Crystallin and Induces Lens Protein Aggregation

    Get PDF
    The eye lens is composed of fiber cells that are filled with α-, β- and γ-crystallins. The primary function of crystallins is to maintain the clarity of the lens through ordered interactions as well as through the chaperone-like function of α-crystallin. With aging, the chaperone function of α-crystallin decreases, with the concomitant accumulation of water-insoluble, light-scattering oligomers and crystallin-derived peptides. The role of crystallin-derived peptides in age-related lens protein aggregation and insolubilization is not understood.We found that αA-crystallin-derived peptide, (66)SDRDKFVIFLDVKHF(80), which accumulates in the aging lens, can inhibit the chaperone activity of α-crystallin and cause aggregation and precipitation of lens crystallins. Age-related change in the concentration of αA-(66-80) peptide was estimated by mass spectrometry. The interaction of the peptide with native crystallin was studied by multi-angle light scattering and fluorescence methods. High molar ratios of peptide-to-crystallin were favourable for aggregation and precipitation. Time-lapse recordings showed that, in the presence of αA-(66-80) peptide, α-crystallin aggregates and functions as a nucleus for protein aggregation, attracting aggregation of additional α-, β- and γ-crystallins. Additionally, the αA-(66-80) peptide shares the principal properties of amyloid peptides, such as β-sheet structure and fibril formation.These results suggest that crystallin-derived peptides such as αA-(66-80), generated in vivo, can induce age-related lens changes by disrupting the structure and organization of crystallins, leading to their insolubilization. The accumulation of such peptides in aging lenses may explain a novel mechanism for age-related crystallin aggregation and cataractogenesis
    • …
    corecore