18,694 research outputs found

    Electron Cryomicroscopy: From Molecules to Cells

    Get PDF
    Today's biomolecular electron microscopy uses essentially three different imaging modalities: (i) electron crystallography, (ii) single particle analysis and (iii) electron tomography. Ideally, these imaging modalities are applied to frozen-hydrated samples to ensure an optimum preservation of the structures under scrutiny. Electron crystallography requires the existence of two-dimensional crystals. In principle, electron crystallography is a high-resolution technique and it has indeed been demonstrated in a number of cases that near-atomic resolution can be attained. Single-particle analysis is particularly suited for structural studies of large macromolecular complexes. The amount of material needed is minute and some degree of heterogeneity is tolerable since image classification can be used for further 'purification in silico'. In principle, single particle analysis can attain high-resolution but, in practice, this often remains an elusive goal. However, since medium resolution structures can be obtained relatively easily, it often provides an excellent basis for hybrid approaches in which high-resolution structures of components are integrated into the medium resolution structures of the holocomplexes. Electron tomography can be applied to non-repetitive structures. Most supramolecuar structures inside cells fall into this category. In order to obtain three-dimensional structures of objects with unique topologies it is necessary to obtain different views by physical tilting. The challenge is to obtain large numbers of projection images covering as wide a tilt range as possible and, at the same time, to minimize the cumulative electron dose. Cryoelectron tomography provides medium resolution three-dimensional images of a wide range of biological structures from isolated supramolecular assemblies to organelles and cells. It allows the visualization of molecular machines in their functional environment (in situ) and the mapping of entire molecular landscapes

    Forecasting the real price of oil in a changing world: a forecast combination approach : [Version November 13, 2013]

    Get PDF
    The U.S. Energy Information Administration (EIA) regularly publishes monthly and quarterly forecasts of the price of crude oil for horizons up to two years, which are widely used by practitioners. Traditionally, such out-of-sample forecasts have been largely judgmental, making them difficult to replicate and justify. An alternative is the use of real-time econometric oil price forecasting models. We investigate the merits of constructing combinations of six such models. Forecast combinations have received little attention in the oil price forecasting literature to date. We demonstrate that over the last 20 years suitably constructed real-time forecast combinations would have been systematically more accurate than the no-change forecast at horizons up to 6 quarters or 18 months. MSPE reduction may be as high as 12% and directional accuracy as high as 72%. The gains in accuracy are robust over time. In contrast, the EIA oil price forecasts not only tend to be less accurate than no-change forecasts, but are much less accurate than our preferred forecast combination. Moreover, including EIA forecasts in the forecast combination systematically lowers the accuracy of the combination forecast. We conclude that suitably constructed forecast combinations should replace traditional judgmental forecasts of the price of oil

    Do oil price increases cause higher food prices?

    Get PDF
    U.S. retail food price increases in recent years may seem large in nominal terms, but after adjusting for inflation have been quite modest even after the change in U.S. biofuel policies in 2006. In contrast, increases in the real prices of corn, soybeans, wheat and rice received by U.S. farmers have been more substantial and can be linked in part to increases in the real price of oil. That link, however, appears largely driven by common macroeconomic determinants of the prices of oil and agricultural commodities rather than the pass-through from higher oil prices. We show that there is no evidence that corn ethanol mandates have created a tight link between oil and agricultural markets. Rather increases in food commodity prices not associated with changes in global real activity appear to reflect a wide range of idiosyncratic shocks ranging from changes in biofuel policies to poor harvests. Increases in agricultural commodity prices in turn contribute little to U.S. retail food price increases, because of the small cost share of agricultural products in food prices. There is no evidence that oil price shocks have caused more than a negligible increase in retail food prices in recent years. Nor is there evidence for the prevailing wisdom that oil-price driven increases in the cost of food processing, packaging, transportation and distribution are responsible for higher retail food prices. Finally, there is no evidence that oil-market specific events or for that matter U.S. biofuel policies help explain the evolution of the real price of rice, which is perhaps the single most important food commodity for many developing countries
    corecore