3,598 research outputs found

    On the characterization of infinitesimal symmetries of the relativistic phase space

    Full text link
    The phase space of relativistic particle mechanics is defined as the 1st jet space of motions regarded as timelike 1-dimensional submanifolds of spacetime. A Lorentzian metric and an electromagnetic 2-form define naturally on the odd-dimensional phase space a generalized contact structure. In the paper infinitesimal symmetries of the phase structures are characterized. More precisely, it is proved that all phase infinitesimal symmetries are special Hamiltonian lifts of distinguished conserved quantities on the phase space. It is proved that generators of infinitesimal symmetries constitute a Lie algebra with respect to a special bracket. A momentum map for groups of symmetries of the geometric structures is provided.Comment: 38 page

    Geometric aspects of higher order variational principles on submanifolds

    Full text link
    The geometry of jets of submanifolds is studied, with special interest in the relationship with the calculus of variations. A new intrinsic geometric formulation of the variational problem on jets of submanifolds is given. Working examples are provided.Comment: 17 page

    On a class of polynomial Lagrangians

    Get PDF
    In the framework of finite order variational sequences a new class of Lagrangians arises, namely, \emph{special} Lagrangians. These Lagrangians are the horizontalization of forms on a jet space of lower order. We describe their properties together with properties of related objects, such as Poincar\'e--Cartan and Euler--Lagrange forms, momenta and momenta of generating forms, a new geometric object arising in variational sequences. Finally, we provide a simple but important example of special Lagrangian, namely the Hilbert--Einstein Lagrangian.Comment: LaTeX2e, amsmath, diagrams, hyperref; 15 page

    On the geometry of the energy operator in quantum mechanics

    Full text link
    We analyze the different ways to define the energy operator in geometric theories of quantum mechanics. In some formulations the operator contains the scalar curvature as a multiplicative term. We show that such term can be canceled or added with an arbitrary constant factor, both in the mainstream Geometric Quantization and in the Covariant Quantum Mechanics, developed by Jadczyk and Modugno with several contributions from many authors.Comment: 18 pages; paper in honour of the 70th birthday of Luigi Mangiarotti and Marco Modugn

    The geometry of real reducible polarizations in quantum mechanics

    Full text link
    The formulation of Geometric Quantization contains several axioms and assumptions. We show that for real polarizations we can generalize the standard geometric quantization procedure by introducing an arbitrary connection on the polarization bundle. The existence of reducible quantum structures leads to considering the class of Liouville symplectic manifolds. Our main application of this modified geometric quantization scheme is to Quantum Mechanics on Riemannian manifolds. With this method we obtain an energy operator without the scalar curvature term that appears in the standard formulation, thus agreeing with the usual expression found in the Physics literature.Comment: 29 page

    On the formalism of local variational differential operators

    Get PDF
    The calculus of local variational differential operators introduced by B. L. Voronov, I. V. Tyutin, and Sh. S. Shakhverdiev is studied in the context of jet super space geometry. In a coordinate-free way, we relate these operators to variational multivectors, for which we introduce and compute the variational Poisson and Schouten brackets by means of a unifying algebraic scheme. We give a geometric definition of the algebra of multilocal functionals and prove that local variational differential operators are well defined on this algebra. To achieve this, we obtain some analytical results on the calculus of variations in smooth vector bundles, which may be of independent interest. In addition, our results give a new a new efficient method for finding Hamiltonian structures of differential equations
    • ā€¦
    corecore