16 research outputs found

    Identification of differentially expressed sense and antisense transcript pairs in breast epithelial tissues

    Get PDF
    Background: More than 20% of human transcripts have naturally occurring antisense products (or natural antisense transcripts – NATs), some of which may play a key role in a range of human diseases. To date, several databases of in silico defined human sense-antisense (SAS) pairs have appeared, however no study has focused on differential expression of SAS pairs in breast tissue. We therefore investigated the expression levels of sense and antisense transcripts in normal and malignant human breast epithelia using the Affymetrix HG-U133 Plus 2.0 and Almac Diagnostics Breast Cancer DSA microarray technologies as well as massively parallel signature sequencing (MPSS) data. Results: The expression of more than 2500 antisense transcripts were detected in normal breast duct luminal cells and in primary breast tumors substantially enriched for their epithelial cell content by DSA microarray. Expression of 431 NATs were confirmed by either of the other two technologies. A corresponding sense transcript could be identified on DSA for 257 antisense transcripts. Of these SAS pairs, 163 have not been previously reported. A positive correlation of differential expression between normal and malignant breast samples was observed for most SAS pairs. Orientation specific RT-QPCR of selected SAS pairs validated their expression in several breast cancer cell lines and solid breast tumours. Conclusion: Disease-focused and antisense enriched microarray platforms (such as Breast Cancer DSA) confirm the assumption that antisense transcription in the human breast is more prevalent than previously anticipated. Expression of a proportion of these NATs has already been confirmed by other technologies while the true existence of the remaining ones has to be validated. Nevertheless, future studies will reveal whether the relative abundances of antisense and sense transcripts have regulatory influences on the translation of these mRNAs

    Meaning, Use, and Supervenience

    Get PDF
    What is the relation between meaning and use? This chapter first defends a non-reductionist understanding of Wittgenstein’s suggestion that ‘the meaning of a word is its use in the language’; facts about meaning cannot be reduced to, or explained in terms of, facts about use, characterized non-semantically. Nonetheless, it is contended, facts about meaning do supervene on non-semantic facts about use. That supervenience thesis is suggested by comments of Wittgenstein’s and is consistent with his view of meaning and rule-following. Semantic supervenience is then defended against two criticisms: first, John McDowell’s suggestion that the supervenience thesis falsifies the epistemology of meaning and fails to accommodate common-sense truths about meaning; second, a series of counter-examples proposed by Stephen Kearns and Ofra Magidor, who argue that worlds may differ semantically without differing non-semantically. It is argued that neither criticism is convincing: we should accept the thesis that semantic facts supervene on non-semantic facts

    Generation of a non-small cell lung cancer transcriptome microarray

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality worldwide. At present no reliable biomarkers are available to guide the management of this condition. Microarray technology may allow appropriate biomarkers to be identified but present platforms are lacking disease focus and are thus likely to miss potentially vital information contained in patient tissue samples.</p> <p>Methods</p> <p>A combination of large-scale in-house sequencing, gene expression profiling and public sequence and gene expression data mining were used to characterise the transcriptome of NSCLC and the data used to generate a disease-focused microarray – the Lung Cancer DSA research tool.</p> <p>Results</p> <p>Built on the Affymetrix GeneChip platform, the Lung Cancer DSA research tool allows for interrogation of ~60,000 transcripts relevant to Lung Cancer, tens of thousands of which are unavailable on leading commercial microarrays.</p> <p>Conclusion</p> <p>We have developed the first high-density disease specific transcriptome microarray. We present the array design process and the results of experiments carried out to demonstrate the array's utility. This approach serves as a template for the development of other disease transcriptome microarrays, including non-neoplastic diseases.</p

    Identification of differentially expressed sense and antisense transcript pairs in breast epithelial tissues

    No full text
    Abstract Background More than 20% of human transcripts have naturally occurring antisense products (or natural antisense transcripts – NATs), some of which may play a key role in a range of human diseases. To date, several databases of in silico defined human sense-antisense (SAS) pairs have appeared, however no study has focused on differential expression of SAS pairs in breast tissue. We therefore investigated the expression levels of sense and antisense transcripts in normal and malignant human breast epithelia using the Affymetrix HG-U133 Plus 2.0 and Almac Diagnostics Breast Cancer DSA microarray technologies as well as massively parallel signature sequencing (MPSS) data. Results The expression of more than 2500 antisense transcripts were detected in normal breast duct luminal cells and in primary breast tumors substantially enriched for their epithelial cell content by DSA microarray. Expression of 431 NATs were confirmed by either of the other two technologies. A corresponding sense transcript could be identified on DSA for 257 antisense transcripts. Of these SAS pairs, 163 have not been previously reported. A positive correlation of differential expression between normal and malignant breast samples was observed for most SAS pairs. Orientation specific RT-QPCR of selected SAS pairs validated their expression in several breast cancer cell lines and solid breast tumours. Conclusion Disease-focused and antisense enriched microarray platforms (such as Breast Cancer DSA) confirm the assumption that antisense transcription in the human breast is more prevalent than previously anticipated. Expression of a proportion of these NATs has already been confirmed by other technologies while the true existence of the remaining ones has to be validated. Nevertheless, future studies will reveal whether the relative abundances of antisense and sense transcripts have regulatory influences on the translation of these mRNAs.</p

    Thigh-length compression stockings and DVT after stroke

    Get PDF
    Controversy exists as to whether neoadjuvant chemotherapy improves survival in patients with invasive bladder cancer, despite randomised controlled trials of more than 3000 patients. We undertook a systematic review and meta-analysis to assess the effect of such treatment on survival in patients with this disease
    corecore