392 research outputs found
Cytomolecular identification of individual wheat-wheat chromosome arm associations in wheat-rye hybrids
Chromosome pairing in the meiotic metaphase I of wheatrye
hybrids has been characterized by sequential genomic
and fluorescent in situ hybridization allowing not only the
discrimination of wheat and rye chromosomes, but also the
identification of the individual wheat and rye chromosome
arms involved in the chromosome associations. The majority
of associations (93.8%) were observed between the wheat
chromosomes. The largest number of wheat-wheat chromosome
associations (53%) was detected between the A and D
genomes, while the frequency of B-D and A-B associations
was significantly lower (32 and 8%, respectively). Among the
A-D chromosome associations, pairing between the 3AL and
3DL arms was observed with the highest frequency, while
the most frequent of all the chromosome associations (0.113/
cell) was found to be the 3DS-3BS. Differences in the pairing
frequency of the individual chromosome arms of wheat-rye
hybrids have been discussed in relation to the homoeologous
relationships between the constituent genomes of
hexaploid wheat
Gravitational waves from single neutron stars: an advanced detector era survey
With the doors beginning to swing open on the new gravitational wave
astronomy, this review provides an up-to-date survey of the most important
physical mechanisms that could lead to emission of potentially detectable
gravitational radiation from isolated and accreting neutron stars. In
particular we discuss the gravitational wave-driven instability and
asteroseismology formalism of the f- and r-modes, the different ways that a
neutron star could form and sustain a non-axisymmetric quadrupolar "mountain"
deformation, the excitation of oscillations during magnetar flares and the
possible gravitational wave signature of pulsar glitches. We focus on progress
made in the recent years in each topic, make a fresh assessment of the
gravitational wave detectability of each mechanism and, finally, highlight key
problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and
Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor
corrections to match published versio
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Variations in task constraints shape emergent performance outcomes and complexity levels in balancing
This study investigated the extent to which specific interacting constraints of performance might increase or decrease the emergent complexity in a movement system, and whether this could affect the relationship between observed movement variability and the central nervous system's capacity to adapt to perturbations during balancing. Fifty-two healthy volunteers performed eight trials where different performance constraints were manipulated: task difficulty (three levels) and visual biofeedback conditions (with and without the center of pressure (COP) displacement and a target displayed). Balance performance was assessed using COP-based measures: mean velocity magnitude (MVM) and bivariate variable error (BVE). To assess the complexity of COP, fuzzy entropy (FE) and detrended fluctuation analysis (DFA) were computed. ANOVAs showed that MVM and BVE increased when task difficulty increased. During biofeedback conditions, individuals showed higher MVM but lower BVE at the easiest level of task difficulty. Overall, higher FE and lower DFA values were observed when biofeedback was available. On the other hand, FE reduced and DFA increased as difficulty level increased, in the presence of biofeedback. However, when biofeedback was not available, the opposite trend in FE and DFA values was observed. Regardless of changes to task constraints and the variable investigated, balance performance was positively related to complexity in every condition. Data revealed how specificity of task constraints can result in an increase or decrease in complexity emerging in a neurobiological system during balance performance
Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).
Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Analysis and modelling of muscles motion during whole body vibration
The aim of the study is to characterize the local muscles motion in individuals undergoing whole body mechanical stimulation. In this study we aim also to evaluate how subject positioning modifies vibration dumping, altering local mechanical stimulus. Vibrations were delivered to subjects by the use of a vibrating platform, while stimulation frequency was increased linearly from 15 to 60Hz. Two different subject postures were here analysed. Platform and muscles motion were monitored using tiny MEMS accelerometers; a contra lateral analysis was also presented. Muscle motion analysis revealed typical displacement trajectories: motion components were found not to be purely sinusoidal neither in phase to each other. Results also revealed a mechanical resonant-like behaviour at some muscles, similar to a second-order system response. Resonance frequencies and dumping factors depended on subject and his positioning. Proper mechanical stimulation can maximize muscle spindle solicitation, which may produce a more effective muscle activation
Contribution of Each Leg to the Control of Unperturbed Bipedal Stance in Lower Limb Amputees: New Insights Using Entropy
The present study was designed to assess the relative contribution of each leg to unperturbed bipedal posture in lower limb amputees. To achieve this goal, eight unilateral traumatic trans-femoral amputees (TFA) were asked to stand as still as possible on a plantar pressure data acquisition system with their eyes closed. Four dependent variables were computed to describe the subject's postural behavior: (1) body weight distribution, (2) amplitude, (3) velocity and (4) regularity of centre of foot pressure (CoP) trajectories under the amputated (A) leg and the non-amputated (NA) leg. Results showed a larger body weight distribution applied to the NA leg than to the A leg and a more regular CoP profiles (lower sample entropy values) with greater amplitude and velocity under the NA leg than under the A leg. Taken together, these findings suggest that the NA leg and the A leg do not equally contribute to the control of unperturbed bipedal posture in TFA. The observation that TFA do actively control unperturbed bipedal posture with their NA leg could be viewed as an adaptive process to the loss of the lower leg afferents and efferents because of the unilateral lower-limb amputation. From a methodological point of view, these results demonstrate the suitability of computing bilateral CoP trajectories regularity for the assessment of lateralized postural control under pathological conditions
Trunk muscle co-activation using functional electrical stimulation modifies center of pressure fluctuations during quiet sitting by increasing trunk stiffness
Initial Genomics of the Human Nucleolus
We report for the first time the genomics of a nuclear compartment of the eukaryotic cell. 454 sequencing and microarray analysis revealed the pattern of nucleolus-associated chromatin domains (NADs) in the linear human genome and identified different gene families and certain satellite repeats as the major building blocks of NADs, which constitute about 4% of the genome. Bioinformatic evaluation showed that NAD–localized genes take part in specific biological processes, like the response to other organisms, odor perception, and tissue development. 3D FISH and immunofluorescence experiments illustrated the spatial distribution of NAD–specific chromatin within interphase nuclei and its alteration upon transcriptional changes. Altogether, our findings describe the nature of DNA sequences associated with the human nucleolus and provide insights into the function of the nucleolus in genome organization and establishment of nuclear architecture
- …
