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Variationsin task constraints shape emer gent perfor mance outcomes and complexity levelsin balancing

Abstract

This study investigated the extent to which specific interacting constrainpggrformance might
increase or decrease the emergent complexity in a movement systemhetigrwthis could affect the
relationship between observed movement variability and the central sesystem's capacity to adapt to
perturbations during balancinBifty two healthy volunteers performed eight trials where diffepemformance
constraints were manipulated: task difficulty (three levels) and visual bigfeledionditions (with and without
the center of pressure (COP) displacement and a target digplBgdaince performance was assessed using
COP-based measures: Mean Velocity Magnitude (MVM) and Bivariate Variable Error (B\@E3ssess the
complexity of COP, Fuzzy Entropy (FE) and Detrended Fluctuation AngIy&i8) were computed. ANOVAs
showed that MVM and BVE increased when task difficulty increasedin@ubiofeedback conditions,
individuals showed higher MVM but lower BVE at the easiest level of taskuiff. Overall, higher FE and
lower DFA values were observed when biofeedback was available. Grthérehand, FE reduced and DFA
increased as difficulty level increased, in the presence of biofeedbaclkeveigwhen biofeedback was not
available, the opposite trend in FE and DFA values was obsdregdrdless of changes to task constraints and
the variable investigatedbalance performance was positively related to complexity in every condiata.
revealed how specificity of task constraints can result in an irci@adecrease in complexity emerging in a

neurobiological system during balance performance.

Keywords. postural control, non-linear analyses, task constraints, biofeedbatls oémpressure, movement

variability.
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1. Introduction

In humans, conceptualized as complex adaptive systems (Riley et al. 2@i2ment variability is
omnipresent due to the distinct constraints that shape each individualdirgotdd behaviors (Davids et al.
2003. Movement variability has been studied as the natural variations that occur inpedtrmance across
multiple repetitions of a task, reflecting changes in both space and time (Newslifaimd1998 Stergiou et al.

2006.

In dynamical system theory, these variatidvase a functional role to drive adaptive behaviors in
movement systems, allowing the central nervous system (CNS) tatekplbigh dimensionality offered by the
abundance of motor system degrees of freedom (DOF) (Davids 808). Adaptive behavior refers to a form
of learning characterized by gradual improvement in performance in ssporaltered conditions (Krakauer
and Mazzoni 2011)The relationship between variability and adaptive behavior will change dependitagk
constraints faced by each individual. Several studies have related moveriehtlity to the capacity of the
CNS to adapt behaviors to environmental changes (Davids et al. R8@@s et al. 2003Renart and Machens

2014 Riley and Turvey 2002).

In order to observe motor behavior changes during adaptati@rakstudies have examined changes
in the neuromuscular system analyzing postural control dynamitsheir relationship with physiological
complexity (Manor et al. 203Manor and Lipsitz 2013)This is because during postural control, the CNS
regulates the activities of many neuromuscular components acting togetheomplementary manner (Manor

et al. 2010Riley and Turvey 2002).

Previous analyses of the relationship between postural control varidbility in movement
coordination have examined two different global dimensions: the mdgndfi observed variability and the
structural dynamics of variability, addressed by analyzing its comple&dgydiou et al. 2006 omplexity has
been defined as the number of system components and coupling tiotera@mong them (Newell and
Vaillancourt 2001)Some researchers have indicated that complexity in different physiologicakpes can be
observed through nonrandom fluctuations on multiple time scalesygigpdgical dynamics (Costa et al. 2002
Lipsitz and Goldberger 199®1anor et al. 2010)This second dimension provides additional information about
properties of the dynamics of observed variability on multiples scalesh wdweals important information on

strategies used by the CNS during task performance (Caballero et gl. 2014
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The complexity of center of pressure (COP) has been a promireagune used for assessing the
relationship between the complexity shown in a biological signal, and abi@ogical systens capacity to
adapt to perturbations in motor tasks like postural control and balance ([R¢cer2010 Goldberger et al.

2002h Menayo et al. 2014).

This methodological prominence has emerged beciusas been consided a collective variable,

responsible for capturing postural organization and balance in indivigRiedy and Turvey 2002).

Data on balance performance have suggested that complexzityidgiogical signal may be related to
the CNSs capacityto re-organize degrees of freedom to adapt to perturbations (Barbado@tZiGaldberger
et al. 2002b). Adaptive movement responses have also been considerednpdifexfunctional exploratory
behaviors, which reveal useful sources of information to perfodriesrn new skills (Stergiou et al. 2006). In
this regard, less complexity in COP dynamics been associated with less capacity to adapt (Barbado et al.
2012 Manor et al. 2010). Moreover, in some cases, the loss of complexXi®P dynamics has been related to

disorders in the CNS (Cattaneo et al. 208&hmit et al. 2006).

However, the direction of this relationship remains somewhat uncldaer €tudies of performance in
balance tasks have reported data which do not support the aforementtetézhship reporting greater
complexity in fluctuations of COP associated with worse task performébaoarte and Sternad 2008
Vaillancourt and Newell 2002). For example, in Duarte and Sternad's (2088)c®mparing young and elderly
people, they foundr higher degree of complexity in older people over an extended tithen{B8) during
performance ima standing balance task. This finding indicates that high levetowiplexity could reflect a
decreased adaptive capacity of CNS over longer time sa&édmncourt and Newell (2002; 2003) suggsbt
that increases or decreases in the complexity of CNS behaviorg ¢anctional, but may be dependent on the
nature of both the intrinsic dynamics of the system and the taskraiotss that need to be satisfied. Due to
specific performance constraints encountered, there may be a reductibe mumber of configurations
available to a dynamical system through a re-structuring of the state spadlepossible configurations
available (Davids et al. 200Blewell and Vaillancourt 2001Here, we sought to understand the extent to which
specific interacting constraints of performance might lead to an increaser@ase of emergent complexity in

a movement system, during task performance

Another important question concerns whether the ‘controversy' sdimguthe relationship between

observed movement variability and the capacity to adapt to unexpected @ions may actuallipe due to the

4
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specific experimental procedures of analysis selected to address compiiatdiperger et al. 2002I5tergiou

et al. 2006). For instance, it has been suggébiat entropy measures which analyze the regularity of alsigna
do not measure the complexity of system dynamics (Goldberger €02b These studiedddnot consider
whether signal regularity was clearly related to the complexity of systeammdgs. Instead, it may be more
appropriate to use fractal measures or long-range autocorrelation analgsisass Detrended Fluctuation
Analysis (DFA), to investigate complexity in complex adaptive systengamkess, several studiraveshown

the utility of entropy measures in interpreting the randomness eriexgntal data from physiological systems
in relation to postural control (Barbado et al. 20@2nker et al. 20067/Menayo et al. 2014), heart rate (Lake et
al. 2002 Wilkins et al. 2009), neuromotor control of movements early in 8i@ith et al. 2011), mental fatigue

(Liu et al. 2010), intracranial pressure (Hornero et al. 2005) or local nfatigiee (Xie et al. 2010).

Up to now, the literature seems to support the view that motor variabitdlated to adaptive capacity,
but the direction of the relationship seems to be unclear, possitdiffrent reasons, including: 1) the role that
specific task constraints may play in shaping emergent behavior®)atiee difficulty in choosing the most
appropriate tool to measure and address complexity in motor behAdidressing possible reasons for this
methodological controversy behind the relationship between movement variahilitgpdaptive capacity, we
sought to understand whether manipulation of task constraints wesuldt in a modification of participant
performance strategies, due to the emergence of novel exploratory belwptured by the re-organization of
motor system degrees of freedom to adapt to challenging perfoensétmations. In this regard, we analyzed
emergent movement adaptations under varying task constraietalsy used different nonlinear tools to
measure the complexity of observed system variability. We hypothesiaedntneases or decreases in the
complexity of a behavior depends on the nature of the task aimstio be satisfied. In particular, we expected
that increasing difficulty and availability of biofeedback would lead to auatemh in the number of

configurations available in the motor system, causing a loss oflewitypand performance decrements.

2. Methods

2.1. Participants.
Fifty two, healthy volunteers (13 women) took part in this stadye (= 25.5 (6.01) years, height = 1.70

(0.25) m, mass = 70.66 (10.33) Kg).They had no previgperénce in the balance task used in this study.
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Written informed consent was obtained from each participant prior to testingexpgerimental
procedures used in this study were in accordance with the Declaratidelsifiki and were approvedyta

University Office for Research Ethics.

2.2. Experimental Procedure and Data Collection

To assess COP fluctuation, ground reaction forces were recorded aiA260@& Kistler 9287BA force
platform.

The task required the participants to stand on a wooden platidsthrg x0.50 m) and perform eight
trials of 70 secondsach with 1-minute rest periods between triddéanding stability and availability of visual
biofeedback were manipulate@he decision to manipulatthese two different task constraints was taken
because both are heavily used in the literature to analyze and train poshiral. In particularthe use of
biofeedback was chosea control “error sensitivity”. According to Herzfeld and Shadmehr (2014) (pp. 149)
“when we make a movement and experience an error, on the next aiterin updates motor commands to
compensatdor some fraction of the error”, and this error sensitivity term varies substantially from individual to
individual and from task to task. Thus, error sensitivity remainstaonfor all participants. Wwo of the eight
trials were performed on a solid floor (stable condition or SC). The ethavere performed on an unstable
platform (unstable condition or UC). All trials were performed under different levels of difficulty, defined
by the stability of the base of support. To achieve this aim, aevoplatform (0.02 m thigkwvas affixed to the
flat surface of three polyester resin hemispheres with the same {&igim) and different diameters: UC1 =
0.50m of diameter; UC2 ©.40m of diameter and UC3 6.30 m of diameter (Figure 1). Each condition was
experienced under two different visual biofeedback conditions: Aowi visual biofeedback, where the
representation of COP displacement was not displayerk, the instruction to participants wasstay “as still
as possible” (Duarte and Sternad 2008nd B) with visual biofeedbackvhere COP displacement, beside a
static center target (0.003 m of diameter on the base of suppdtCanoh projected on the wall in front of the
participant scale displays: 16.6 to 1), was displayed in real-time. Participantingénected to keep their COP

on the target (Figure 1).

Figurelaround here
2. 3. Data analysis and reduction
An application under Labview 2009 (Mathworks, Natick MA, USA), develdpetlur laboratory, was

used to perform the data analysis. COP time series were previoushtysdowled from 1000 Hz to 20 Hz due

6
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to: 1) there being little of physiological significance above 10 Hz in the GfdRIgBorg and Laxaback 2010)
and suggestions to use sampling frequencies close to COP dynamiaglef@abt al. 2013); 2) signal
oversampling possibly leading to artificial co-linearities, affecting the viéitjadata (Rhea et al. 2011). The
first and last 5 s of each trial were discarded to avoid non-stationgldted to trial initiation (van Dieén et al.
2010. Time series length was 1200 data points. It has to be taking in a¢hatione time series were shorter
than 1200 data point&90 data points) due to the fact that two participants were unbalanced befera\ie
computed the time series data before these failtitest result were included in the analysis becauda not
show outlier values in any of the assessed variables. Two filtprimpsses were used to analyze different
postural control behaviors that are related to two different component®Bfdplacement:rambling and
trembling (Zatsiorsky and Duarte 1999). The first is defined as the moti@ rabving reference point with
respect to which the body’s equilibrium is instantly maintained and charadtesizerge amplitudes at low
frequenciesThis component could be related to central control (Tahayori et al.. 201y, we used a low-pass
filter (4th order, zero-phase-lag, Butterworth, 5 Hz cut-off frequerftin et al. 2008) to assess it. The
trembling component is defined as the oscillation of COP aroandeference point trajectory, being
characterized by short amplitudes at high frequencies (Zatsiorskipuarte 1999)This component could be
related to peripheral control (Tahayori et al. 20E8nce, we used a high-pass filter (4th order, zero-phase-lag,
Butterworth, 10 Hz cut-off frequency), similar tatlused by Manor et al. (2010).

Postural sway was assessed using traditional bivariate COP-based measureéng the anterior-
posterior (AP) and medklateral (ML) displacement trajectories: Bivariate Variable Error (BVE) and Mean
Velocity Magnitude (MVM). These variables were used to assess task performdngerarcalculated over the
signal, filtered usinga low-pass filter. We used just the filtered signal usinlpw-pass filter because static
balance is characterized by small amounts of postural sway which izedhatiiow frequencies.

BVE was measured as the average value of the absolute distance taréagfant’s own midpoint

(Equation 1) (Hancock et al. 19%rieto et al. 1996).

BVE = %i\/((&- -X*+ ;-1

1)
whereN is the number of data points in the COP displacement time seriéssaath successive data point.

MVM was measured as the average velocity of COP (Equation 2) (Prieto €@jl. 19
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MVM = %Z \/(((Xi+1 - Xi))z + (i1 - Yi))z)

@)
where T is the trial duration (60 s).

The variables used to assess the complexity of COP were Fuzzy Enkgpyaiid Detrended
Fluctuation Analysis (DFA). These variables were calculated after both were filterqtaaedsed (low-pass
and high-pass filters). The variables were calculated over the resultant d{®BNC@OP time series (Figure 2),
instead of the AP and ML time series, due to the fact that the orientatithve dfase-of support is only
approximately aligned with the axes of the force platform, especially tahlassituations (Prieto et al. 1996)
Thus, measures based on the AP time series probably reflect some&iments of the participant, and vice
versa, while the RD vector is not sensitive to the orientation of the basgmdrs with respect to the force
platform (Prieto et al. 1996Roerdink et al. 2011). RD is the vector distance from the centee qgfasturogram

to each pair of points in the AP and ML time series (Equation 3).

RD time series;_, = Z \/((Xi - )_()2 +(Yi— Y)Z)

i=1
(3)
Figure2 around here

FE typically returns values that indicate the degree of irregularity inigmals This measure computes the
repeatability of vectors of length m and m + 1 that repeat within a tolerange of r of the standard deviation
of the time-series (Equations from 4 to 12). Higher values of FErdmuesent lower repeatability of vectors of
length m to that of m + 1, marking a greater irregularity in the timeatoof the signal. Lower values represent
a greater repeatability of vectors of length m + 1, and are, dhosirker of lower irregularity in signal output.
To calculate this measure we used the following parameter values: vectbr langt2; tolerance window, r =
0.2*SD; and gradient, n=2. In previous research these parameter valuesdwarenigh levels of consistency,
which underlies their frequent use (Chen et al. 2007). FE was deft@alecording to the procedures of Chen et

al. (2007).We also conducted analyses of other related complexity measures, such as Bangpgl

However, we chose FE becausedisplays some advantages, such as a stronger relative consistency, less

dependency on data length, free parameter selection and more robustieéss tGhen, Zhuang, Yu and Wang,

2009; Xie et al., 2010).
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DFA represents a modification of classic root mean square analysisanitbhrn walk to evaluate the
presence of longerm correlations within a time series using a parameter referred to as the scaling index, a
(Bashan et al. 2008eng et al. 1995)The scaling index o corresponds to a statistical dependence between
fluctuations at one time scale and those over multiple time scales (Decker 403l.T20s procedure estimates
!sample Entropy was also calculated as another entropy measure to assesgehef irregularity of CoP
values To calculate this measure we used the following parameter values: vector lengtt2; tolerance

window, r = 0.2*SD Pincus, 1991). The resultgere very similar to the FE results, both in the effect of the
different constraints and the correlation between performance and complexit

the fractal scaling properties of a time series (Duarte and Sternad 200&saal$o been used to describe the

complexity of a process (Goldberger et al. 2002a).

This measure was computed according to the procedures of Peng @9%3). Il this study, the slope o
was obtained from the window range 4 < n < N/10 to maximize the long-range correlations and reduce errors
incurred by estimating o (Chen et al. 2002)Different values of o indicate the following: o > 0.5 implies
persistence in position (the trajectory tends to rentaits current direction); o < 0.5 implies anti-persistence in

position (the trajectory tends to return from where it came) (Roeediak 2006).

2. 4. Statistical Analysis.

Normality of the variables was evaluated using the Kolmogorov_Switest with the Lilliefors
correction. Mixed repeated measures ANOVA with two intra-individual facttask difficulty level and
biofeedback availabilitywas used to assess effects of both factors on performance outteaseres and
complexity variables. Outcomes of the ANOVAs were considered to be statistigéitaignvhen there was a
<5% chance of making a type | error (p < 0.05). Bonferrojpistichent for multiple comparisons was performed
to ascertain differences between task performance under different constredmtiracto each intra-individual
factor. Partial eta squareqf,o was calculated as a measure of effect size and to provide a proportien of
overall variance that is attributable to the factor. Values of effect size >0.64 were considered strong, around 0.25
were considered moderate and < 0.04 were considered small (Ferguson 2009).

Finally, Pearson product moment correlation coefficients were calculated to assessshéfetio
between performance variables (BVE and VMM) and complexity meagtitesnd DFA).

3. Results
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Mean values obtained under each balance condition and pairwise compaesaeesn difficulty

conditions and biofeedback conditions are displayed in Table 1.

MVM showed higher values in biofeedback condition s(£74.876; p<.001p;=.595). In contrast,
despite BVE not revealing overall differences between biofeedback availabilityiooa@#; 5,=2.637; p=111;
11,2,:.049, atlower levels of difficulty lower values of BVE were observed in the biofeedback condition @igur
3). BVE differences observed between biofeedback conditions dieadeceas task difficulty level increased,
and even disappeared at the most difficult performance levels. Additionallly, gerformance variables
displayed higher values when task difficulty increased, being sigmifficdifferent between conditions (BVE:

F1.83,03.35374.305; p<.001;=.880; MVM: Fy g9 06.5491.241; p<.001y;,=.909 (Figure 3.

With regard to complexity variables, in the low-pass filtered signal, highgR s= 77.660; p< .001;
rl,z,:.604) and lower DFA valuegF, s~ 65.392 p<.001;n,=.562) were observed when biofeedback was
available. However, differences in these dependent measures deas#assd difficult level were increased
(figure 4). Regarding the high-pass filtered signal, the presenbimfetdback did not display effects on any

complexity variable (FE: 5= 3.949; p=.0521,=.072 DFA: F, 5= 1.744; p:-1921],2,:.033).

Complexity valuesit different task difficulty levels varied according to the filter used hiloéeedback
condition and the variable recorded (Figure 4). When variables were calculatedeolmv-pass filtered signal,
in the presence of biofeedback, FE values were significdifterent between SC and UC3 and between UC3
and UC1, decreasing as difficulty increased. However, without bicde&dlBE increased with task difficulty,
displaying significant differences in the value between SC and/ é¥€rcondition Regarding DFA in the
conditions with biofeedback, significant differences were observed hetw€4 and UC3 and between UC2
and UC3, reaching the highest values at the most difficult task leveloWitiiofeedback, DFA values
decreased from SC to UC2 and UC3, and from UC1 to,@@aining the highest values at the least difficult

task level

On the other hand, when complexity variables were calculated with the déghfifiered signal, FE
decreased and DFA increased as task difficulty increased regardless odithbilay of biofeedback. So, in
mostof the conditions, dependent variables showed significant differences betwelsmoletask difficulty, but

differences between biofeedback conditions were only found witiplss filtered signals.

Table 1. Average values (mean + SD) in each balance condition of evetyl@aalculated in the stud»

10



SC ucCl1 uc2 (ex
BVE 367+1.29 10.76 + 3.09 12.58 + 3.48 16.6 £ 6.01
BVE_FB 2.54 +.829 9.69 + 1.83 12.02 £ 3.48 17.31+3.77
MVM 6.23+2.01 24,92 +7.38 31.71£9.52 41.25+12.79
MVM_FB 8.66 +2.98 30.09 £ 7.29 37.02£9.26 48.39 £ 11.11
L ow-passfilter
FE .356+ .126 456+ .120 496 +.144 503+ .166
FE FB .555 +.125 580+ .105 564+ .111 530+ .137
DFA 1.13+£.116 1.07 £.133 1.01+£.131 1.04 £ .143
DFA_FB .956 +.115 931 +.107 945 +.102 997 +£.120
High-passfilter
FE 2.05+.104 1.95+.151 1.91+.176 1.76+.290
FE_FB 2.03+.094 1.94+.151 1.88+.165 1.73+.244
DFA .565+.102 .666+.126 .695+.127 744+.119
DFA_FB .565+.100 .661+.124 .721+.124 .769+.117
1 Note. Units of center of pressure (COP) measures are as follows: mm;(BWiy (MVM). FB = with
2 biofeedback; SC = Stable condition; UC1 = Unstable condition difficulty level 1; £ Cstable condition
3 difficulty level 2; UC3 = Unstable condition difficulty level 3.
4 Figure3 and 4 around here
5 Performance variables (BVE and MVMJere positively correlated, but showed an inverse correlation
6  with complexity variables. Furthermore, the degree of dependence hetlveze varied according to the filter
7 used and biofeedback availabilitvhen the low-pass filtered signal was used (table 2), and in conditions
8 without biofeedback, BVE was negatively correlated with FE and pelsitoorrelated with DFA. Nevertheless
9 in conditions with biofeedback, this correlation was only found atHighest task difficulty level. MVM
10  showed positively correlation with FE and negatively correlation with DFA wedpe availability of

11 biofeedback. Additionally, FE and DFA variables displayed an inverse relatidnshipry condition.

Table 2. Pearson product moment correlation coefficient calculated betweenmnjaerde variables an
complexity variables, usinglow-pass filter, in each balance condition.
With biofeedback

Without biofeedback

SC
MVM FE DFA MVM FE DFA
BVE .834** -.366** .166 .392%* -.500** 378**
MVM 29 -.161 A436%* -.337*
FE -.631** - 754**
ucCl1
MVM FE DFA MVM FE DFA
BVE .613** -.143 -.092 .333* -361F .319*
MVM .508+* -421%* .662* -.570**
FE -577* -.830*
uc2
MVM FE DFA MVM FE DFA

11
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BVE .615** -.263 .084 .336* -. 430 .344*

MVM 522 -.315*% .605* -.384**
FE =521 -.623*
uc3
MVM FE DFA MVM FE DFA
BVE A25%* -.485** AT 571 - 432+ A66**
MVM AT -.319* 416+ -211
FE -.800%* - 736**

** Correlation is significant at the 0.05 level (2-tailed).

* Correlation is significant at the 0.01 level (2-tailed).

Note. SC = Stable condition; UC1 = Unstable condition difficulty level 1; UC2 #dblescondition difficulty
level 2; UC3 = Unstable condition difficulty level 3.

When the high-pass filter was used (Table 3) BVE was negatively correldteBE, only in the most
difficult task condition regardless of the availability of biofeedback. sitpe correlation between BVE and
DFA was found when biofeedback was available, only at the lowestighdsh task difficulty levels, but no
correlation between them was found in conditions without biofeedWditi.regard to MVM, this variable was
negatively correlated with FE in all of the unstable conditions (with ohowtt biofeedback). MVM was

positively correlated with DFA only in the stable condition when the hilif@ek was availablén the condition

without biofeedback, this correlation was observed in UC1 and UC2.

Table 3. Pearson product moment correlation coefficients calculated betwdermpece variables an
complexity variables, usingtagh-passfilter, in each balance condition.

With biofeedback Without biofeedback
SC
MVM FE DFA MVM FE DFA
BVE .834** -.176 .208* .392%* .060 -.034
MVM -.264 .328* -.017 -.009
FE -.513* -.291*
UCi
MVM FE DFA MVM FE DFA
BVE .613** .042 -.039 .333* -111 .183
MVM -.305* .204 -.552* .326*
FE -.639* -.681**
uc2
MVM FE DFA MVM FE DFA
BVE .615** -.138 .027 .336* .075 -.006
MVM - 474> 101 -.389** .288*
FE - 476 - 747+
UC3
MVM FE DFA MVM FE DFA
BVE 425%* -.369** .396** S571** -.382* .071
MVM -.438* .164 -.528=* -.015
FE -.594 -.281*

** Correlation is significant at the 0.05 level (2-tailed).

* Correlation is significant at the 0.01 level (2-tailed).

Note. SC = Stable condition; UC1 = Unstable condition difficulty level 1; UC2 #dblescondition difficulty
level 2; UC3 = Unstable condition difficulty level 3.

4, Discussion

12
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Recently it has been argued that an increase or decrease in thexitymof a behavioral or
physiological system depends on interactions between system intrinsignidgnand performance task
constraints (Vaillancourt and Newell 2Q02aillancourt and Newell 2003). In this experimerg investigaed
the complexity of movement system variability during performancdiférent balance t&s, observing that
participants modified their postural control dynamics according to taféuttiy and availability of biofeedback.

In addition, regardless of these changes to task constraints, perfonvasnoasitively related to complexity.

Performance decreased when balance task difficulty was iedraasreported in previous research
(Barbado et al. 201Borg and Laxaback 2010Yalues in performance measurésth in BVE and MVM,
increased as task difficulty level increased (figure 3). However, availabiliotdedback had different effects
on BVE and MVM values. With biofeedback, BVE values decreased significandly,only at lover task
difficulty levels. However, as difficulty level was increased, biokesdk availability did not influence the
amount of variability observed in COP measures. In stable or less ciradlemgtable task conditions, different
locations of the COP on the surface of support albaparticipant to maintain stability (Caballero et al. 2014)
However, increasing taséifficulty limited the region of stabilitysignifying that in the difficult balancing
conditions, theravere a limited number of COP locations where system stability could be maintéieedand
Granata 2008)Under more stable balancing conditions visual biofeedback was used to m@i@Rilocation
on the target Under more challenging postural control conditions, visual biofeedb&whriation might have
been redundant, because participants did not have many COP locatieres thédy could maintain system

stability. They only had possible outcome solutitire sameas displayed by the available biofeedback signal.

From a dynamical systems viewpaqidifferences between biofeedback conditions could be interpreted as the

existence of different types of attractors in a performance landdtaeems that participants usadehavior
similar to a fixed-point attractor when biofeedback was available, charactdry a fixed point in state space
where no movement is observed (van Emmerik and van Wegen. 28@0¢rthelessparticipants explored the
oscillatory COP dynamics (Vaillancourt and Newell 2003) without biofeedliacthe least challenging
conditions. Availability of biofeedback seemhto change postural control strategigsdecreasing the number
of configurations available to a dynamical movement system (Davids et(8).2@ this regard, available

information seemdto constrain the system to one area of the attractor landscape in this task.

On the other hand, MVM values displayed an increase in biofeedbackimomadompared to when

biofeedback was not available. Although there are a greater number COP beetiere stability can be

13
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maintained, this increase MVM could be due to the fact that under the less challenging task constvang
biofeedback drives the system to one spedtifi@ation Without biofeedback, participants focused on avoiding
falling. In the conditions with biofeedback they tried to adjust their G®OEhe target, performing greater
number of adjustmentshe increased values of MVM in biofeedback situations can ladsrelated to an
increased error sensitivity of the individuals regulated by the CNS (Herzfel@rettmehr 2014). In this sense,
MVM could be an index of the amount of corrections needed to atlestCOP locationincreasing
neuromuscular effort and resulting from participant exploratory betsavitigher COP velocity would be an
index of exploratory behaviors in discovering stable performance swutimder relatively novetask

constraints (Davids et al. 1999).

According to previous studies, COP analysis has revealed two diffevstural control mechanisms:
rambling and trembling (Mochizuki et al. 2Q0Bahayori et al. 2012 hese two processes may reflect changes
in the body reference configuration and changes in the propertie® ahdbhanical and neural structures
implementing the supraspinal control signals (Danna-Dos-Santos et al. @088)yved variability of low-pass
filtered COP, related to volitional control (rambling component), showegheeihdegree of irregularity and less
longrange auto-correlation when biofeedback was availabBlee changes in these variables, influenced by
biofeedback, might indicate that the existence or not of this tastraor drives the system to different kinds
of behaviors The system would transit to a state spagisplaying lower values of complexity without
biofeedback (similar to oscillatory dynamic), and a behavior relatedixedrpoint attractor in conditions with
feedback, revealing more complexity in COP behaviors (van Emmadkvan Wegen 2000). Taking into
account the effect of difficulty level, when biofeedback was available, the defjigegularity of low-pass
fitered COP decreased as task difficulty increased, wheredsrtheangeauto-correlation values increased.
However, under task constraints when biofeedback was not available, tthdardfE and DFA values was
inverted. Moreover, as task difficulty levels increased, clearly the differeaiveeen biofeedback conditions
was reducedThis finding reflects again the redundancy of biofeedback in these mallerging conditions
where COP locations compatible with maintaining system stability are reduicéce the findings of Manor et
al. (2010) which support the role of complexity of fluctuations relateg@eripheral adjustments in postural
control when standing, our results seem to indicate that complexityres nelated to volitional changes in COP
dynamics, reflecting a search strategy in participants to cope with taskagaestihich do not necessarily
require an involvement ad greater number of DOFAccording to Danna-Dos-Santos et al. (2008) this search

strategy could be reflectedy the rambling component. These findings are suppolty Newell and
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Vaillancourt (2001) who suggested that the increase or the decrease of ¢yngalexbe independent of the
number of component mechanical degrees of freedom being harnessesystem, but the direction of the

changes in complexity is driven by task constraints.

These contrasting results could have emerged for different reas@isit kérpossible that the balance
task constrairstused in both studies were different. Thus, the type of control requirerftgriteeping balance
could have differed. Another reason could be due the populationsdtidianor et al., (2010) studied COP
complexity in people with risk factors for falls for whom pespal control could ba/key factorin avoiding
falls, whilst the participants of our study were healthy people with little ofsfalling. Nevertheless, it is
difficult to compare the results of the two studies because Manor @04D) did not analyse low-pass COP
signals. In future studies it would be interesting to assess botlokitmmponents of COP displacement and

changes in COP complexity in relation to distinct task constraints and vihedif populations.

Regarding the high-pass filtered COP sigithé availability of biofeedback did not affect system
complexity, but task difficulty did, showing a decrease of irregylaand an increase ifong-rangeauto-
correlation as task difficulty increasetiaking into account that this filter procedure could reflect peripheral
postural control (trembling component), this lack of effect of the bitbfeek condition could be due to the fact
that the fluctuations of the trembling component represent an involuatfugtment of COP (Danna-Dos-
Santos et al. 2008 ahayori et al. 2012). On the other hand, the fact that the mosuHiffanditions revealed
less irregularity and greatemg-rangeauto-correlation of the COP signal could indicate that, in these situations,
individuals reduced the number of involuntary adjustments due to fiwuliyf in correcting COP displacement

because of the increase in inertia.

Regarding correlational analysis, a direct relationship between BVE and complagifpund in both
low-pass and (to lesser extent) high-pass filtered COP signals. These resnlte geg#icate that participants
who shoved lower balance performance exhibifower number of postural adjustments. Conversely, MVM
was directly related to complexity in the low-pass filtered COP signaliavetsely, to complexity in the high-
pass filtered COP signal. This finding could mean that individuals vgptagied low COP velocities showed
higher number of peripheral postural adjustments aholv humber of volitional corrections. Additionally,
when participants showed higher COP velocities, it could mean that the goatigiistem could not control

stability and more volitional postural corrections were needed to rimabdance.
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The fact that the relationships between balance performance variables and comgiexigyronger in
the low-pass filtered COP, revealed the prevalence of volitional adjustmeptstural control to maintain
balance. Peripheral adjustments pldy less relevant role in the postural control strategy during the balance

tasks analyzed in this study.

Our results indicated thaa specific relationship that emerges between system complexity and
performance is dependeah task constraints (Newell and Vaillancourt 20®hillancourt and Newell 2002
Vaillancourt and Newell 200Q3Vaillancourt et al. 2004).tlseems that each performance variable varied
according to different task constraints encountered by participants, reveafergrdiftrends. These findings
signified that when researchers wish to assess the relationship betwewslivilual's capacity to adapt and
system complexity when learning or under different performancstreomts, contradictory results may be
observed due to the influence diftind task constraints designed into experiments. Furthermore, thigeiy a
important point to take into account when the system complexity is defatsystem constraints afgeing,

illness or damage.

To conclude, in this study we provided some support fordis that specific task constraints can lead
to an increase or decrease in complexity emerging in a neuraballogystem during performance
Informational constraints, such as availability of biofeedback and level bfdifficulty, shaped emergent
strategies of movement coordinatiotiue to participants searching for different attractors to functionally

regulate their behaviors.
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