106 research outputs found

    ARIADNE - A novel optical LArTPC: technical design report and initial characterisation using a secondary beam from the CERN PS and cosmic muons

    Get PDF
    ARIADNE is a 1-ton (330 kg fiducial mass) dual-phase liquid argon (LAr) time projection chamber (TPC) featuring a novel optical readout. Four electron-multiplying charge-coupled device (EMCCD) cameras are mounted externally, and these capture the secondary scintillation light produced in the holes of a thick electron gas multiplier (THGEM). Track reconstruction using this novel readout approach is demonstrated. Optical readout has the potential to be a cost effective alternative to charge readout in future LArTPCs. In this paper, the technical design of the detector is detailed. Results of mixed particle detection using a secondary beam from the CERN PS (representing the first ever optical images of argon interactions in a dual-phase LArTPC at a beamline) and cosmic muon detection at the University of Liverpool are also presented.Comment: 58 pages, 40 figures. Changes from previous version based on pre-publication review: improved quality of various figures, improved clarity of some definitions and reduced longer sentences for better readability, fixed typos and formatting error

    The fate and behavior of selected endocrine disrupting chemicals in full scale wastewater and sludge treatment unit processes

    Get PDF
    Endocrine disrupting chemicals are discharged into the environment mainly through wastewater treatment processes. There is a need for better understanding of the fate of these compounds in the unit processes of treatment plant to optimize their removal. The fate of oestrone, 17β-estradiol, 17α-ethinyestradiol and nonylphenol in the unit processes of full scale wastewater treatment plants in the UK, including activated sludge plant, oxidation ditch, biofilter and rotating biological contractor were investigated. The overall removal efficiencies of all the compounds ranged from 41 % to 100 %. The removals were predominantly during the secondary biological treatment with the rates of removal related to the nitrification rates and the sludge age. The removal efficiency of the treatment processes were in the order activated sludge > oxidation ditch > biofilter > rotating biological contractors. Activated sludge plant configured for biological nutrient removal showed better removal of the endocrine disrupting chemicals compared to conventional activated sludge plant effluents. Tertiary treatment was also significant in the removal process through solids removal. Overall mechanisms of removal were biodegradation and sorption unto sludge biomass. Phytoremediation was also significant in the removal processes. The endocrine disrupting chemicals persisted in the anaerobic sludge digestion process with percentage removals ranging fro 10-48 %. Sorption of the endocrine disrupting chemicals onto the sludge increased with increasing values for the partitioning coefficients and the organic carbon contents of the sludge

    Consumer-Led Screening for Atrial Fibrillation: Frontier Review of the AF-SCREEN International Collaboration.

    Get PDF
    The technological evolution and widespread availability of wearables and handheld ECG devices capable of screening for atrial fibrillation (AF), and their promotion directly to consumers, has focused attention of health care professionals and patient organizations on consumer-led AF screening. In this Frontiers review, members of the AF-SCREEN International Collaboration provide a critical appraisal of this rapidly evolving field to increase awareness of the complexities and uncertainties surrounding consumer-led AF screening. Although there are numerous commercially available devices directly marketed to consumers for AF monitoring and identification of unrecognized AF, health care professional-led randomized controlled studies using multiple ECG recordings or continuous ECG monitoring to detect AF have failed to demonstrate a significant reduction in stroke. Although it remains uncertain if consumer-led AF screening reduces stroke, it could increase early diagnosis of AF and facilitate an integrated approach, including appropriate anticoagulation, rate or rhythm management, and risk factor modification to reduce complications. Companies marketing AF screening devices should report the accuracy and performance of their products in high- and low-risk populations and avoid claims about clinical outcomes unless improvement is demonstrated in randomized clinical trials. Generally, the diagnostic yield of AF screening increases with the number, duration, and temporal dispersion of screening sessions, but the prognostic importance may be less than for AF detected by single-time point screening, which is largely permanent, persistent, or high-burden paroxysmal AF. Consumer-initiated ECG recordings suggesting possible AF always require confirmation by a health care professional experienced in ECG reading, whereas suspicion of AF on the basis of photoplethysmography must be confirmed with an ECG. Consumer-led AF screening is unlikely to be cost-effective for stroke prevention in the predominantly young, early adopters of this technology. Studies in older people at higher stroke risk are required to demonstrate both effectiveness and cost-effectiveness. The direct interaction between companies and consumers creates new regulatory gaps in relation to data privacy and the registration of consumer apps and devices. Although several barriers for optimal use of consumer-led screening exist, results of large, ongoing trials, powered to detect clinical outcomes, are required before health care professionals should support widespread adoption of consumer-led AF screening

    International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020).

    Get PDF
    Given its non-invasive nature, there is increasing interest in the use of transcutaneous vagus nerve stimulation (tVNS) across basic, translational and clinical research. Contemporaneously, tVNS can be achieved by stimulating either the auricular branch or the cervical bundle of the vagus nerve, referred to as transcutaneous auricular vagus nerve stimulation(VNS) and transcutaneous cervical VNS, respectively. In order to advance the field in a systematic manner, studies using these technologies need to adequately report sufficient methodological detail to enable comparison of results between studies, replication of studies, as well as enhancing study participant safety. We systematically reviewed the existing tVNS literature to evaluate current reporting practices. Based on this review, and consensus among participating authors, we propose a set of minimal reporting items to guide future tVNS studies. The suggested items address specific technical aspects of the device and stimulation parameters. We also cover general recommendations including inclusion and exclusion criteria for participants, outcome parameters and the detailed reporting of side effects. Furthermore, we review strategies used to identify the optimal stimulation parameters for a given research setting and summarize ongoing developments in animal research with potential implications for the application of tVNS in humans. Finally, we discuss the potential of tVNS in future research as well as the associated challenges across several disciplines in research and clinical practice

    2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.

    Get PDF
    S

    2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.

    Get PDF
    S

    withdrawn 2017 hrs ehra ecas aphrs solaece expert consensus statement on catheter and surgical ablation of atrial fibrillation

    Get PDF
    n/
    corecore