211 research outputs found

    The genetic structure of Nautilus pompilius populations surrounding Australia and the Philippines.

    Get PDF
    Understanding the distribution of genetic diversity in exploited species is fundamental to successful conservation. Genetic structure and the degree of gene flow among populations must be assessed to design appropriate strategies to prevent the loss of distinct populations. The cephalopod Nautilus pompilius is fished unsustainably in the Philippines for the ornamental shell trade and has limited legislative protection, despite the species' recent dramatic decline in the region. Here, we use 14 microsatellite markers to evaluate the population structure of N. pompilius around Australia and the Philippines. Despite their relative geographical proximity, Great Barrier Reef individuals are genetically isolated from Osprey Reef and Shark Reef in the Coral Sea (FST =0.312, 0.229, respectively). Conversely, despite the larger geographical distances between the Philippines and west Australian reefs, samples display a small degree of genetic structure (FST =0.015). Demographic scenarios modelled using approximate Bayesian computation analysis indicate that this limited divergence is not due to contemporary gene flow between the Philippines and west Australia. Instead, present-day genetic similarity can be explained by very limited genetic drift that has occurred due to large average effective population sizes that persisted at both locations following their separation. The lack of connectivity among populations suggests that immigrants from west Australia would not facilitate natural recolonization if Philippine populations were fished to extinction. These data help to rectify the paucity of information on the species' biology currently inhibiting their conservation classification. Understanding population structure can allow us to facilitate sustainable harvesting, thereby preserving the diversity of genetically distinct stocks. This article is protected by copyright. All rights reserved

    A High Statistics Search for Ultra-High Energy Gamma-Ray Emission from Cygnus X-3 and Hercules X-1

    Full text link
    We have carried out a high statistics (2 Billion events) search for ultra-high energy gamma-ray emission from the X-ray binary sources Cygnus X-3 and Hercules X-1. Using data taken with the CASA-MIA detector over a five year period (1990-1995), we find no evidence for steady emission from either source at energies above 115 TeV. The derived upper limits on such emission are more than two orders of magnitude lower than earlier claimed detections. We also find no evidence for neutral particle or gamma-ray emission from either source on time scales of one day and 0.5 hr. For Cygnus X-3, there is no evidence for emission correlated with the 4.8 hr X-ray periodicity or with the occurrence of large radio flares. Unless one postulates that these sources were very active earlier and are now dormant, the limits presented here put into question the earlier results, and highlight the difficulties that possible future experiments will have in detecting gamma-ray signals at ultra-high energies.Comment: 26 LaTeX pages, 16 PostScript figures, uses psfig.sty to be published in Physical Review

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Orbital Observations of Dust Lofted by Daytime Convective Turbulence

    Get PDF
    Over the past several decades, orbital observations of lofted dust have revealed the importance of mineral aerosols as a climate forcing mechanism on both Earth and Mars. Increasingly detailed and diverse data sets have provided an ever-improving understanding of dust sources, transport pathways, and sinks on both planets, but the role of dust in modulating atmospheric processes is complex and not always well understood. We present a review of orbital observations of entrained dust on Earth and Mars, particularly that produced by the dust-laden structures produced by daytime convective turbulence called “dust devils”. On Earth, dust devils are thought to contribute only a small fraction of the atmospheric dust budget; accordingly, there are not yet any published accounts of their occurrence from orbit. In contrast, dust devils on Mars are thought to account for several tens of percent of the planet’s atmospheric dust budget; the literature regarding martian dust devils is quite rich. Because terrestrial dust devils may temporarily contribute significantly to local dust loading and lowered air quality, we suggest that martian dust devil studies may inform future studies of convectively-lofted dust on Earth

    Dynamic contrast-enhanced CT compared with positron emission tomography CT to characterise solitary pulmonary nodules : the SPUtNIk diagnostic accuracy study and economic modelling

    Get PDF
    Background Current pathways recommend positron emission tomography–computerised tomography for the characterisation of solitary pulmonary nodules. Dynamic contrast-enhanced computerised tomography may be a more cost-effective approach. Objectives To determine the diagnostic performances of dynamic contrast-enhanced computerised tomography and positron emission tomography–computerised tomography in the NHS for solitary pulmonary nodules. Systematic reviews and a health economic evaluation contributed to the decision-analytic modelling to assess the likely costs and health outcomes resulting from incorporation of dynamic contrast-enhanced computerised tomography into management strategies. Design Multicentre comparative accuracy trial. Setting Secondary or tertiary outpatient settings at 16 hospitals in the UK. Participants Participants with solitary pulmonary nodules of ≥ 8 mm and of ≤ 30 mm in size with no malignancy in the previous 2 years were included. Interventions Baseline positron emission tomography–computerised tomography and dynamic contrast-enhanced computer tomography with 2 years’ follow-up. Main outcome measures Primary outcome measures were sensitivity, specificity and diagnostic accuracy for positron emission tomography–computerised tomography and dynamic contrast-enhanced computerised tomography. Incremental cost-effectiveness ratios compared management strategies that used dynamic contrast-enhanced computerised tomography with management strategies that did not use dynamic contrast-enhanced computerised tomography. Results A total of 380 patients were recruited (median age 69 years). Of 312 patients with matched dynamic contrast-enhanced computer tomography and positron emission tomography–computerised tomography examinations, 191 (61%) were cancer patients. The sensitivity, specificity and diagnostic accuracy for positron emission tomography–computerised tomography and dynamic contrast-enhanced computer tomography were 72.8% (95% confidence interval 66.1% to 78.6%), 81.8% (95% confidence interval 74.0% to 87.7%), 76.3% (95% confidence interval 71.3% to 80.7%) and 95.3% (95% confidence interval 91.3% to 97.5%), 29.8% (95% confidence interval 22.3% to 38.4%) and 69.9% (95% confidence interval 64.6% to 74.7%), respectively. Exploratory modelling showed that maximum standardised uptake values had the best diagnostic accuracy, with an area under the curve of 0.87, which increased to 0.90 if combined with dynamic contrast-enhanced computerised tomography peak enhancement. The economic analysis showed that, over 24 months, dynamic contrast-enhanced computerised tomography was less costly (£3305, 95% confidence interval £2952 to £3746) than positron emission tomography–computerised tomography (£4013, 95% confidence interval £3673 to £4498) or a strategy combining the two tests (£4058, 95% confidence interval £3702 to £4547). Positron emission tomography–computerised tomography led to more patients with malignant nodules being correctly managed, 0.44 on average (95% confidence interval 0.39 to 0.49), compared with 0.40 (95% confidence interval 0.35 to 0.45); using both tests further increased this (0.47, 95% confidence interval 0.42 to 0.51). Limitations The high prevalence of malignancy in nodules observed in this trial, compared with that observed in nodules identified within screening programmes, limits the generalisation of the current results to nodules identified by screening. Conclusions Findings from this research indicate that positron emission tomography–computerised tomography is more accurate than dynamic contrast-enhanced computerised tomography for the characterisation of solitary pulmonary nodules. A combination of maximum standardised uptake value and peak enhancement had the highest accuracy with a small increase in costs. Findings from this research also indicate that a combined positron emission tomography–dynamic contrast-enhanced computerised tomography approach with a slightly higher willingness to pay to avoid missing small cancers or to avoid a ‘watch and wait’ policy may be an approach to consider. Future work Integration of the dynamic contrast-enhanced component into the positron emission tomography–computerised tomography examination and the feasibility of dynamic contrast-enhanced computerised tomography at lung screening for the characterisation of solitary pulmonary nodules should be explored, together with a lower radiation dose protocol. Study registration This study is registered as PROSPERO CRD42018112215 and CRD42019124299, and the trial is registered as ISRCTN30784948 and ClinicalTrials.gov NCT02013063

    The Sudbury Neutrino Observatory

    Full text link
    The Sudbury Neutrino Observatory is a second generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and epsf style files. For additional information about SNO see http://www.sno.phy.queensu.ca . This version has some new reference

    Comparative Accuracy and Cost-Effectiveness of Dynamic Contrast Enhanced Computed Tomography and Positron Emission Tomography in the Characterisation of Solitary Pulmonary Nodules

    Get PDF
    Abstract Introduction: Dynamic contrast-enhanced computed tomography (DCE-CT) and Positron Emission Tomography/Computed Tomography (PET/CT) have a high reported accuracy for the diagnosis of malignancy in solitary pulmonary nodules. The aim of this study was to compare the accuracy and cost-effectiveness of these. Methods: In this prospective multicentre trial, 380 participants with a solitary pulmonary nodule (8-30mm) and no recent history of malignancy underwent DCE-CT and PET/CT. All patients underwent either biopsy with histological diagnosis or completed CT follow-up. Primary outcome measures were sensitivity, specificity, and overall diagnostic accuracy for PET/CT and DCE-CT. Costs and cost-effectiveness were estimated from a healthcare provider perspective using a decision-model. Results: 312 participants (47% female, 68.1±9.0 years) completed the study, with 61% rate of malignancy at 2 years. The sensitivity, specificity, positive predictive value and negative predictive values for DCE-CT were 95.3% [95% CI 91.3;97.5], 29.8% [95% CI 22.3;38.4], 68.2% [95% CI 62.4%;73.5%] and 80.0% [95% CI 66.2;89.1] respectively, and for PET/CT were 79.1% [95% CI 72.7;84.2], 81.8% [95% CI 74.0;87.7], 87.3%[95% CI 81.5;91.5) and 71·2% [95% CI 63.2;78.1]. The area under the receiver operator characteristic curve (AUROC) for DCE-CT and PET/CT was 0.62 [95%CI 0.58;0.67] and 0.80 [95%CI 0.76;0.85] respectively (p<0.001). Combined results significantly increased diagnostic accuracy over PET/CT alone (AUROC=0.90 [95%CI 0.86;0.93], p<0.001). DCE-CT was preferred when the willingness to pay per incremental cost per correctly treated malignancy was below £9000. Above £15500 a combined approach was preferred. Conclusions: PET/CT has a superior diagnostic accuracy to DCE-CT for the diagnosis of solitary pulmonary nodules. Combining both techniques improves the diagnostic accuracy over either test alone and could be cost-effective. (Clinical trials.gov - NCT02013063)
    corecore