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Abstract 

Understanding the distribution of genetic diversity in exploited species is fundamental to successful 

conservation. Genetic structure and the degree of gene flow among populations must be assessed to 

design appropriate strategies to prevent the loss of distinct populations. The cephalopod Nautilus 

pompilius is fished unsustainably in the Philippines for the ornamental shell trade and has limited 

legislative protection, despite the species’ recent dramatic decline in the region. Here, we use 14 

microsatellite markers to evaluate the population structure of N. pompilius around Australia and the 

Philippines. Despite their relative geographical proximity, Great Barrier Reef individuals are 

genetically isolated from Osprey Reef and Shark Reef in the Coral Sea (FST=0.312, 0.229, 

respectively). Conversely, despite the larger geographical distances between the Philippines and west 

Australian reefs, samples display a small degree of genetic structure (FST=0.015). Demographic 

scenarios modelled using approximate Bayesian computation analysis indicate that this limited 

divergence is not due to contemporary gene flow between the Philippines and west Australia. Instead, 

present-day genetic similarity can be explained by very limited genetic drift that has occurred due to 

large average effective population sizes that persisted at both locations following their separation. The 

lack of connectivity among populations suggests that immigrants from west Australia would not 

facilitate natural recolonization if Philippine populations were fished to extinction. These data help to 

rectify the paucity of information on the species’ biology currently inhibiting their conservation 

classification. Understanding population structure can allow us to facilitate sustainable harvesting, 

thereby preserving the diversity of genetically distinct stocks.  

 

Introduction 

Throughout the world, many commercial marine species are experiencing significant population 

declines (Hutchings 2000; Worm et al. 2006; Neubauer et al. 2013; Watson et al. 2013). The 

harvesting of marine animals began 42,000 years ago (O’Connor et al. 2011), up to 50,000 years after 

the anthropogenically triggered extinctions of large mammals seen on land (Koch & Barnosky 2006). 

Human access to the marine environment is no longer technologically inhibited, and defaunation of 
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the oceans is now occurring (McCauley et al. 2015). Present extinction rates are probably a thousand 

times higher than extinction rates in the absence of human actions (Pimm et al. 2014). Identifying 

species with a high risk of extinction (Davidson et al. 2012) can facilitate policy changes and prevent 

declines. An international agreement between governments that was developed to regulate declines is 

the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). 

CITES aims to ensure that the survival of species is not threatened by international trade, and the 

convention is reliant on biological data to construct a specific framework for participating countries to 

implement (CITES 2015). Unfortunately, the absence of biological information and global industrial 

data can prevent qualification for CITES protection (De Angelis 2012).  

 

Population connectivity data can be used by CITES to design effective conservation strategies for 

marine resources. Contemporary movement and migration among marine populations have been 

monitored using tracking devices, but success has been variable (see Semmens et al. 2007). Movement 

among populations can be estimated using population genetic analyses (Pearse & Crandall 2004). 

Although specific individuals cannot always be tracked, molecular techniques do allow the detection 

of gene flow among populations through patterns of shared genetic variation (Levin 2006; Cowen & 

Sponaugle 2009). For vulnerable species, knowledge of the genetic structure of populations can be 

used to inform sustainable harvesting practices, prevent local extinctions and preserve the diversity of 

genetically distinct stocks (Carvalho & Hauser 1994). Oceans are considered to present few physical 

barriers to gene flow so that widely separated areas can remain connected, making absolute vicariance 

rare in a marine environment (Palumbi 1994; Mirams et al. 2011). Population structure and speciation 

have, however, been attributed to oceanic features, such as salinity (Rocha 2003; Lessios et al. 2003), 

depth and temperature (Zardi et al. 2007). Ocean fronts (Galarza et al. 2009) and currents (White et al. 

2010) have also been shown to represent major barriers to gene flow, suggesting that marine 

environments may contain more barriers to dispersal than is generally appreciated.  
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Oceanic features with the potential to act as a barrier to movement can result in genetic structure that 

ranges from panmixia (Lessios et al. 2003) to complete separation (Baums et al. 2012). The inference 

of demographic history over long time scales can answer questions regarding long-term gene flow 

between, and distribution of genetic diversity among, populations (Semmens et al. 2007). This ability 

to infer a species’ movements can be used in various areas of conservation, for example, to evaluate 

whether marine protected areas are appropriate (i.e. to assess that species movement does not extend 

beyond protected boundaries; Grüss et al. 2011), to trace the origins of a catch (Hobson 1999), or to 

ensure that illegal catches are not being missold to the consumer (Griffiths et al. 2013).  

 

Despite the technology and conservation strategies available, population declines continue in most 

species (Neubauer et al. 2013). The poor success of attempts to aid the recovery of commercial marine 

species (Hutchings 2000) suggests that anthropogenic pressure is too high and that there are gaps in 

scientific knowledge that must be resolved to enable effective conservation (Sale et al. 2005). A key 

example of a species currently lacking biological and population connectivity data is the shelled 

cephalopod, Nautilus pompilius. Nautiloids (Nautilus spp. Linnaeus and Allonautilus spp. Ward and 

Saunders) are heavily overfished for the ornamental shell trade. The long-term effects of fishing on 

populations, or their ability to recover, are unknown (De Angelis 2012). An 80% decline in catch per 

unit effort for N. pompilius during 1980–2010 has been reported from Philippine fisheries (Dunstan et 

al. 2010). The current deficiency of data on the species’ biology has inhibited the development of 

appropriate legislative mechanisms to prevent the species’ overexploitation and decline. 

Understanding migration and its effect on population dynamics is important when deciding on 

appropriate protection measures for populations through in-situ means, such as marine protected areas 

(Grüss et al. 2011). 

 

Cephalopod migration, however, is poorly understood, and this is exacerbated by the difficulties 

associated with tracking them (Stark et al. 2005; Semmens et al. 2007). In coleoids (octopus, 

cuttlefish, squid), juveniles are often too small to be tagged, tag placement in adults can be difficult, 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

and capture rates fluctuate and are often reliant on fishermen reporting catches (Sauer et al. 2000). 

Improvements in technology, with concomitant decreases in device size and cost, will aid progress in 

this area.  

 

Historical movement of N. pompilius populations has been investigated using molecular approaches; 

hypothesised differentiation of N. pompilius populations was confirmed by comparing variation at 

cytochrome c oxidase subunit I (COI). Populations separated into three geographically distinct 

monophyletic clades, which comprise a west Australian/Indonesian clade, an east Australian/Papua 

New Guinean clade and a west Pacific clade (Wray et al. 1995; Sinclair et al. 2007, 2011; Bonacum et 

al. 2011; Williams et al. 2012). The observed population structure was proposed to be the result of 

dispersal from an ancestral population in the Philippines (Wray et al. 1995). Historical expansions of 

nautiloid distribution will have been restricted by at least three biogeographical barriers (Crick 1993): 

water depth, distance between adjacent shelf seas and sea temperature. These constraints are also 

relevant to modern Nautilus and Allonautilus, whose movements are limited to some extent by their 

morphology. Nautiloids are typically found between depths of 130 and 700 m (Dunstan et al. 2011), 

remaining close to the reef for protection from predators. The internal arrangement of the Nautilus 

shell means that their deepest position in the water column is limited by their risk of shell implosion. 

As a consequence, the maximum depth at which an individual would be encountered is considered to 

be approximately 800 m (Saunders & Wehman 1977; Kanie et al. 1980). These limitations create a 

dispersive barrier and, despite small geographical distances, genetic differentiation has occurred 

(Sinclair et al. 2007), furthered by the absence of a juvenile larval stage that might aid dispersal 

(Saunders & Landman 2010). Understanding gene flow between current populations can help to 

inform sustainable fishing and aid the design of specific genetic management, and yet nothing has 

been known about the current connectivity of N. pompilius populations. Understanding population 

connectivity will help to establish the impact that fishing is having across their distribution following 

N. pompilius population declines in the Philippines (Barord et al. 2014). 
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Here, we use molecular techniques and statistical analyses to assess the connectivity of N. pompilius 

populations surrounding Australia and the Philippines. These data will contribute towards rectifying 

the information deficiency that currently inhibits the legal classification of N. pompilius as an 

endangered species, and our findings can be used to assess the species’ qualification for CITES listing. 

Approximate Bayesian computation (ABC) analysis has enabled a powerful assessment of the species’ 

genetic diversity and made it apparent that, despite the persistence of high levels of variability that are 

usually associated with large populations, there is limited gene flow into shrinking contemporary 

populations. This implies that overfishing currently threatens some populations with extinction. 

 

Materials and Methods 

Sample collection 

Australian samples were collected from seven reefs in the Indo-Pacific Ocean (Fig. 1) under an 

Australian Fisheries Management Authority Scientific Permit (number 1002548). West Australian 

(WA) samples were taken from four reefs: Clerke Reef, Imperieuse Reef, Ashmore Reef and Scott 

Reef. East Australian (EA) samples consisted of Osprey Reef and Shark Reef in the Coral Sea, and the 

Far North Great Barrier Reef. Samples from the Philippines (PH) were collected from three locations: 

Tinitian, Roxas and Palawan. Collections were made under a Gratuitous Permit from the Department 

of Agriculture in the Republic of the Philippines.  

 

N. pompilius was caught using traps positioned on the reefs at a depth of ~200 m (Sinclair et al. 2011) 

baited with ~1 kg of uncooked chicken (Gallus gallus), set at dusk and collected at dawn. Tissue 

collection was non-lethal: a 1�2 cm-long labial tentacle sample was collected before each individual 

was released. Tentacles were immediately placed into a 20% DMSO (dimethylsulfoxide), 100 mM 

EDTA pH 8, saturated NaCl2 solution and stored at 4°C in the field. Samples were later washed in TE 

buffer (1 M Tris-HCl pH 7.5; 0.5 M EDTA pH 8.0; Sambrook et al. 1989) and placed into 1 ml 

absolute ethanol in the laboratory for storage at room temperature (Sinclair et al. 2011). 
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Microsatellite Genotyping and Validity 

Genomic DNA was extracted using Qiagen DNeasy tissue kits (QIAGEN Ltd, Manchester, UK). DNA 

concentration was quantified using a fluorometer (Fluostar Optima) and its quality assessed with 

electrophoresis on a 1% agarose gel. Fourteen polymorphic N. pompilius microsatellite loci (Williams 

et al. 2015) were selected based on satisfactory results from quality checks, and used to genotype all 

215 individuals sampled. PCR amplification was performed in 2-µl PCR reactions, including 10 ng 

air-dried DNA, 0.2 µM reverse primer, 0.2 µM forward fluorescent primer (6FAM, HEX, VIC or PET 

labelled) and 1 µl Qiagen Multiplex Master mix. Multiplexes were amplified under the following 

profile: 95°C for 15 min, followed by 44 cycles of 94°C for 30 s, 56°C for 90 s, 72°C for 90 s and 

finally 72°C for 10 min. PCR products were analysed on an ABI 3730 48-well capillary DNA analyser 

(Applied Biosystems Inc.) using LIZ GS500 size standard (Applied Biosystems Inc.). Allele sizes 

were assigned using the GENEMAPPER v3.7 software (Applied Biosystems Inc.). 

 

Relatedness between individuals was estimated with SPAGEDI (Hardy & Vekemans 2002) using 

Queller and Goodnight’s (1989) measure of relatedness. Relatives were removed and departure from 

Hardy–Weinberg equilibrium (HWE; P <0.05) and linkage disequilibrium (LD) were calculated using 

GENEPOP (Raymond & Rousset 1995; Rousset 2008). LD was assessed using 1000 iterations per 

population and P-values corrected using the False Discovery Rate adjustment (FDR; Verhoeven et al. 

2005). Corrections were made on a population-by-population basis to avoid overinflating the number 

of tests in which the correction was required. Each microsatellite locus was assessed to estimate the 

frequency of null alleles and identify scoring errors due to stutter using MICRO-CHECKER (Van 

Oosterhout et al. 2004). Null allele frequency per locus was estimated using CERVUS v3.0 (Kalinowski 

2005). To assess genotyping error rate, 60% of samples were re-extracted and re-genotyped across all 

loci. Error rates per reaction were calculated according to Hoffman & Amos (2005). 
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Population Structure 

Three Bayesian clustering methods were used to determine the most likely number of genetic clusters 

within the data set: STRUCTURE (Pritchard et al. 2000), TESS (Durand et al. 2009) and GENELAND 

(Guillot et al. 2005). The software STRUCTURE was run with an admixture model and no prior 

information on the sampling locations (Supplementary Material Table 1). To avoid the influence of 

kinship on inferred structure, all individuals within a population with a relatedness of 0.5 were 

removed from the dataset before analysis (Queller & Goodnight 1989). Plotting the natural logarithm 

of the posterior probability (PP) of K given the data over multiple runs determined the predicted 

number of clusters (Supplementary Material Fig. 2), and this was compared with ǻK (Evanno et al. 

2005) as determined in STRUCTURE HARVESTER v.0.6.93 (Earl & VonHoldt 2011). Independent runs 

for all datasets were averaged in CLUMPP v.1.1.2 (Jakobsson & Rosenberg 2007) using the Greedy 

algorithm with 10,000 repeats to develop a consensus value for K. Graphical representation was 

produced in DISTRUCT v.1.1 (Rosenberg 2003). Bayesian clustering of TESS was run without 

admixture and K was inferred from the modal value of the replicate with the highest likelihood. A 

correlated allele frequency model was used in GENELAND and the burn-in length was based on the 

appearance of the posterior density log, as suggested by the software manual. The number of proposed 

clusters was selected from the highest mean log PP (Guillot et al. 2009).  

 

MICROSATELLITE ANALYSER (Dieringer & Schlötterer 2003) was used to calculate pairwise FST 

values (Weir & Cockerham 1984) between sampling locations, with Bonferroni corrections applied. 

To test for an association between FST and geographical distance, Mantel’s test for isolation by 

distance (IBD) was performed in SPAGEDI with 10,000 randomisations. A regression of the spatial 

distance against FST/(1-FST) was performed (Rousset 1997). Jost’s differentiation index (Dest) values 

(Jost 2008) across loci were calculated using DEMETICS (Gerlach et al. 2010).  
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Approximate Bayesian Computation Methods 

To test alternative hypotheses that could explain the genetic similarity between PH and WA samples 

(see Results), we conducted an ABC analysis (Beaumont et al. 2002). ABC aims to obtain the joint 

posterior distribution of complex models for which the likelihood function can be difficult or 

impossible to solve analytically, allowing a great flexibility in the scenarios being investigated 

(Marjoram & Tavaré 2006). Its rationale is to bypass the need of an exact likelihood function by 

comparing summary statistics from observed data to the summary statistics obtained by simulating the 

models of interest (Beaumont 2010; Csilléry et al. 2010).  

 

We compared three evolutionary scenarios (Fig. 3). Model IWOM assumes that an ancestral 

population of size NA split t generations ago into two daughter populations, PH and WA, of effective 

sizes N1 and N2, respectively (Fig. 3b).  Model IM (Nielsen & Wakeley 2001) is equivalent to Model 

IWOM with the adjustment that populations PH and WA have constantly exchanged migrants since 

their split at rates m12 and m21, respectively (Fig. 3c). A null model was also tested as Model PAN; this 

assumes that PH and WA are part of the same panmictic population of effective size NP (Fig. 3a). Note 

that to compute summary statistics comparable to the observed data (i.e. from two different 

populations), we set ModelPAN using ModelIWOM parameters but fixed the divergence time to 1 

generation – effectively modelling the samples as a panmictic population throughout their whole 

history. 

 

The prior distributions were uniform for all demographic parameters and the same range was used for 

common parameters between models (Table 2). For all demographic models, we assumed that 

microsatellites evolved under a stepwise-mutation model. Mean mutation rates across loci were 

extracted from a normal prior distribution, and single-locus mutation rates were drawn from a Gamma 

distribution as parameterized in ABC TOOLBOX (Wegmann et al. 2010), using uniform priors for the 

two parameters of the distribution. To avoid effects of substructure within the WA clade, and due to 

similar sample size, Ashmore Reef was chosen to represent the WA clade. 



A
c

c
e

p
te

d
 A

r
ti

c
le

This article is protected by copyright. All rights reserved. 

Summary statistics and simulations 

ABC analyses were conducted using the package ABC TOOLBOX (Wegmann et al. 2010). One 

limitation of ABC is that models can appear more or less likely dependent on the range of the 

parameter values and the weight assigned to them by the priors (Sousa et al. 2012). Exploratory 

simulations were therefore performed with varied sets of priors to allow an assessment of their effect 

on the posterior distribution and ensure that the whole posterior was contained within the final prior 

range. 

 

We used FASTSIMCOAL (Excoffier & Foll 2011; Excoffier et al. 2013) to run one million coalescent 

simulations of our dataset of 14 microsatellites under each model. ARLSUMSTAT (Excoffier & Lischer 

2010) was used to calculate a set of 30 summary statistics (within and between populations; 

Supplementary Material Table 2), chosen based on those shown to be informative in previous studies 

(Palero et al. 2009; Sousa et al. 2012; Butlin et al. 2013). To reduce the high dimensionality of the 

summary statistics, we used a partial least-squares (PLS) transformation (Wegmann et al. 2009) to 

extract their orthogonal components. PLS identifies components to explain variability of response 

variables (model parameters) by maximising the covariance matrix of predictor (raw summary 

statistics) and response variables (Wegmann et al. 2009). 

 

Model choice and parameter estimation 

For model comparison, marginal densities comparable between models were produced using the PLS-

transformed summary statistics for the rejection step, while all raw summary statistics were used to 

perform the post-sampling adjustment step using the ABC-GLM (General Linear Model) in ABC 

TOOLBOX (Wegmann et al. 2009). We retained the 5% of simulations closest to the observed data. We 

checked that our observed summary statistics (for both PLS components and raw summary statistics) 

fell within the distribution of summary statistics from the simulations retained. Bayes Factors and PP 

were derived from the model choice procedure (Supplementary Material Table 3). P-values were taken 

as an indication of each model’s ability to explain the data. 
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To validate our model choice procedure, we simulated 1000 pseudo-observed data sets for each model 

using the original priors. The original results files (of one million simulated data sets for each model) 

were used to perform our model choice procedure using each of the 1000 pseudo-observed data sets in 

turn. To test the robustness of discrimination between models using our model choice procedure, each 

pairwise comparison of simulated and observed data for the two models was performed. A model’s 

original data were compared with the pseudo-data of the same model and those of the model being 

compared. Posterior probabilities were compared with a logistic regression. Confidence in model 

choice was calculated by estimating the FDR (Verhoeven et al. 2005): the frequency of the PP being 

equal to or larger than the real PP of the best model. 

 

For parameter estimation, the distance step and post-sampling adjustment were both carried out using 

PLS components. This was performed independently for each model because different PLS 

components are extracted for each model. The GLM method implemented in ABC TOOLBOX 

(Leuenberger & Wegmann 2010) was used for post-sampling adjustment. Parameter estimation was 

verified by ensuring P-values were reasonably large (>0.05 as suggested in the ABC TOOLBOX manual) 

and checking that posterior distributions were within the prior ranges (Supplementary Material Fig. 3). 

The pseudo-observed data were also used to check for uniformity of the posterior quantiles; a 

departure from uniformity suggests a parameter is over- or underestimated.  

 

Results 

Genotyping Validation 

A genotyping error rate of zero was determined between replicates. No evidence was found for 

frequent allelic drop-out across any loci in any sampling locations. A shortage of heterozygous 

genotypes was found for locus Npom08 in the Osprey Reef and Scott Reef populations, possibly 

resulting from scoring errors due to stutter. This locus was retained in analyses due to its quality in 

other reef populations. The estimated frequency of null alleles was low for all loci (≤ 0.05). Departure 
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from HWE was not detected consistently across all sampling locations at any loci. No pairs of loci 

consistently showed LD in all populations, suggesting that no loci were physically linked. FST values 

ranged from -0.04 to 0.35, Dest ranged from -0.04 to 0.75 (Table 1). IBD analysis revealed no overall 

association between FST and geographical distance and was not significant (r
2 
= 0.139; P = 0.095).  

 

Population Structure 

Shark Reef was grouped with Osprey Reef for analyses based on their close geographical location and 

high degree of relatedness (Table 1); they will hereafter be referred to as Osprey Reef. Results 

incorporating spatial data in TESS (Fig. 2a) and GENELAND (Supplementary Material Fig. 1) returned 

three and five genetic clusters, respectively. TESS returned the first cluster, including PH and all WA 

reefs, the second cluster of the Great Barrier Reef, and third cluster of Osprey Reef. GENELAND 

divided samples into five genetic clusters of: (i) PH, (ii) Ashmore, Imperieuse and Clerke Reefs, (iii) 

Scott Reef, (iv) Great Barrier Reef and (v) Osprey Reef. 

 

Plots of ǻK and LnP(K) generated from STRUCTURE results indicated four as the most likely number 

of genetic clusters present in the full dataset (Fig. 2). The first two genetic clusters consisted of 

populations PH and WA, the third cluster consisted of EA Great Barrier Reef, and cluster four 

consisted of Coral Sea’s Osprey Reef (Fig. 2b). Sub-setting the data to look for further division within 

clusters returned validating results (Fig. 2c and 2d). 

 

Approximate Bayesian computation analysis 

The model comparison gave strong support to modelIWOM (PP = 1.0, Supplementary Material Table 3) 

and the FDR was low (0.2%), indicating with high confidence that the data were not the result of 

sustained migration between the Philippines and WA (see also Supplementary Material Fig. 4). 

Moreover, this model fitted the data well (the observed summary statistics lay within the range of both 

the untransformed and PLS-transformed post-rejection simulated summary statistics), indicating that 

its best score was not a result of a bad fit by all models to the data. Parameter estimation under 
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modelIWOM enabled estimation of the ancestral effective population size (median: 2,035,120; highest 

posterior density (HPD95 low, high): 62,816.9, 4,508,320), which was smaller than the estimated 

current population sizes of PH (median: 3,080,000) and WA (median: 2,610,000). The distribution of 

posterior quantiles did not show strong departures from uniformity, which is indicative of a lack of 

bias in parameter estimation (Wegmann et al. 2009). 

 

Discussion 

We detected population structure among east Australian sampling sites, indicating genetic isolation of 

Osprey Reef and Shark Reef from the Great Barrier Reef. West Australian samples revealed limited 

population structure but with significant pairwise FST and Dest between Scott Reef and the other west 

Australian reefs. The genetic similarity found between the Philippines and west Australia was 

unexpected. Further investigation modelling different demographic scenarios revealed that this 

similarity was not the result of migration, but may be attributable to ancestral population sizes that 

were until recently large (population declines have been shown in areas under fishing pressure; Barord 

et al. 2014), and consequently exhibiting limited genetic drift.  

 

Mechanisms for population structure 

Results from software STRUCTURE, TESS and GENELAND showed Osprey Reef and Shark Reef 

populations in the Coral Sea to be genetically distinct from the Great Barrier Reef, west Australia, and 

Philippine populations. Ocean physiography (the physical geography of the ocean floor) appears to 

have been influential in this differentiation. Ocean depths in the Coral Sea between Osprey Reef and 

the Great Barrier Reef exceed 1700 m (Dunstan et al. 2011), and while movement through open water 

is feasible, it leaves individuals vulnerable to predation (Yomogida & Wani 2013). The response of N. 

pompilius individuals to attacks by teleosts showed that that they retreated into their shells and 

demonstrated no defence or escape response (Saunders & Landman 2010). The Great Barrier Reef was 

shown to be distinct, not only from Osprey Reef but also from the western populations, which supports 
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the conclusions of previous evolutionary studies using partial COI sequences (Sinclair et al. 2007, 

2011; Bonacum et al. 2011; Williams et al. 2012). 

 

West Australian results were not consistent across software; STRUCTURE and TESS assigns the 

Philippines and west Australia to the same genetic population, whereas GENELAND designates the 

Philippines and Scott Reef as separate genetic clusters. Geographically, Scott Reef is located between 

Ashmore and Clerke Reef, and the differentiation is seen between Scott Reef and surrounding west 

Australian reefs, despite shallower surrounding sea depths. FST measures deviation from panmixia, Dest 

measures deviations from total differentiation (Whitlock 2011); both FST and Dest values distinguish 

Scott Reef as a separate genetic cluster.  

 

Due to their residing depth, data on currents at the surface cannot explain N. pompilius dispersal 

patterns (Biuw et al. 2007). Currents have been shown to impact individual positions on a reef (O’Dor 

et al. 1993), with recorded movements of up to 6 km that may have been facilitated by currents 

(Dunstan et al. 2011). However, N. pompilius has also demonstrated strong resistance to currents and 

an ability to utilise them to obtain food (O’Dor et al. 1990). The overall impact of currents on the 

species’ population distribution is poorly documented. 

 

No significant correlation was found between FST and linear geographic distance (Rousset 1997). IBD 

has been shown in other cephalopods (Pérez-Losada et al. 2002; Kassahn et al. 2003; Cabranes et al. 

2008) but, like Nautilus, the octopus Octopus vulgaris (Moreira et al. 2011), the cuttlefish Sepia 

esculenta (Zheng et al. 2009) and the squid Loligo pealeii (Buresch et al. 2006) have all demonstrated 

genetic distances disproportionate to geographical distances. It has been hypothesised that this was in 

each case due to natal philopatry (Kassahn et al. 2003; Buresch et al. 2006). It has been speculated 

that this behaviour does not occur in nautiloids (Crook & Basil 2013), but gaps remain in our 

knowledge of N. pompilius ecology. Despite lacking the lensed eye and vertebrate-like brain of other 

cephalopods (including dedicated lobes for learning and memory), N. pompilius has been shown to be 
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capable of both spatial learning and navigational strategy (Crook et al. 2009; Crook & Basil 2013). 

Migration on a small scale is not completely unfeasible, but seems unlikely at the scale investigated in 

our study. 

 

Divergence without migration 

Our ABC model does not support the possibility of sustained migration between the Philippines and 

west Australia as an explanation for the genetic admixture shown in the structural analyses. Movement 

of individuals between the two sites was unknown, but depth limitations of N. pompilius are indicative 

of isolation over such a geographical distance; it is possible that the genetic similarity observed has 

resulted from incomplete lineage sorting. Marker data can be misleading about relationships among 

populations due to the retention and stochastic sorting of ancestral polymorphisms. This is especially 

likely if the effective population size is large relative to lineage length (the time since the populations 

split; Maddison & Knowles 2006). Alleles can then persist in both populations due to limited genetic 

drift. ModelIWOM indicated extremely large ancestral and current effective population sizes, resulting in 

a lower probability of alleles becoming fixed before divergence (Pamilo & Nei 1988). Current 

population size estimates for the Philippines (median = 3,190,920) and Ashmore Reef (median = 

2,562,800) suggest that genetic drift has yet to have a significant impact. Such large current population 

estimates are potentially due, in part, to substructure within the sampled areas. Sampling from the 

Philippines was conducted in several locations, the connectivity between which was assumed but not 

confirmed. West Australian samples were from the most northern of these reefs, Ashmore Reef; gene 

flow was previously established between the sampled west Australian reefs (Williams et al. 2012). 

This local gene flow may have inflated the population estimate for Ashmore Reef, reflecting the 

population size of the NW shelf populations. 

 

Population density estimates made using baited remote underwater video systems were calculated as 

13.6 and 0.03 individuals per km2 for Osprey Reef and Bohol Sea (Philippines), respectively (Barord 

et al. 2014). Using different methods to generate these results produced predictably dissimilar 
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abundance data. Additionally, Barord et al. (2014) documents evidence of a sudden population size 

reduction, but our data showed that allelic richness in the Philippines was no lower than at other 

locations sampled (Fig. 4). It is possible that the genetic consequences of population reduction have 

yet to take effect; low fecundity and long developmental time (Carlson et al. 1984; Landman et al. 

2010) of nautiloids results in a long generation time compared to other cephalopods. Fishing for shells 

is relatively new, with no cultural or historical significance in studied areas such as Palawan (Dunstan 

et al. 2010), and so it is possible that we will see a genetic response to exploitation that is not yet 

detectable with our current set of markers. 

 

The allelic richness in Philippine samples also supports the proposed direction of colonisation from the 

progenitor population located in the Philippines (Wray et al. 1995). There is lower allelic richness in 

the Great Barrier Reef, with a further decline in the more genetically distinct Osprey and Shark Reefs 

of the Coral Sea (Fig. 4). The time split estimation (median = 296,495 generations/1,660,366 years 

based on a generation time of 5.6 years (Saunders & Landman 2010)) by modelIWOM indicates that 

current populations have been evolving independently for a similar time as the accepted species of 

modern N. pompilius (Kröger et al. 2011). 

 

Management implications 

The absence of migration between the Philippines and west Australia highlights the need for 

mechanisms to protect these populations as discrete conservation units (Moritz 1994). Environmental 

differences between sites have not been measured and so it is unknown if resulting divergent selection 

has occurred, but as a unique population with the possibility of local adaptation, adequate protection 

for the Philippines is imperative to the long-term survival of this genetic cluster. The absence of 

contemporary migration indicates that it is unlikely that the Philippines would be repopulated, should 

fishing in this area continue to extinction. Informative results must now reach policy makers to enable 

legislative protection. 
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The variation seen in IBD within cephalopods demonstrates the need for species-specific range 

studies, especially when results are extrapolated for fisheries management. As fin fish stocks decline 

and the fishing industry targets novel resources, it is likely that cephalopod stocks will experience 

increased fishing pressure (Dillane et al. 2005). The data supporting the need for Nautilus and 

Allonautilus protection is ever increasing (Dunstan et al. 2010; Bonacum et al. 2011; Williams et al. 

2012; De Angelis 2012; Barord et al. 2014). Overexploitation is threatening marine species world-

wide (Hutchings 2000; Worm et al. 2006; Doukakis et al. 2009; Neubauer et al. 2013; Watson et al. 

2013) and our study highlights the need for multiple or finer-scale markers to determine connectivity 

patterns and establish adequate protection. For example, mitochondrial DNA data on the west 

Australian reefs (Williams et al. 2012) suggested that the population was panmictic, but the higher-

resolution data presented here reveals substructure. Our results show how management plans should 

incorporate discrete management units and should account for more than separation by geographic 

distance. 

 

Conclusions 

A range of molecular studies has been conducted on coleoids (Allcock et al. 2015), including 

population structure analysis using minisatellites, microsatellites and mitochondrial DNA (Dillane et 

al. 2005; Zheng et al. 2009; Moreira et al. 2011), but this is the first study to use microsatellite 

markers in a nautiloid. We had hypothesised genetic division between east and west Australia based 

on previous evolutionary studies on these populations (Sinclair et al. 2007, 2011; Bonacum et al. 

2011; Williams et al. 2012), but we found a greater degree of genetic similarity between samples from 

the Philippines and west Australia than had been previously considered. Our conclusion that this 

similarity was not the result of migration emphasises the need to reduce over-exploitation and prevent 

the local extinction of N. pompilius in the Philippines. Protection for Nautilus and Allonautilus under 

CITES would decrease the incentive for continued exploitation. In relatively inaccessible species, 

genetic data can provide an insight into migration and population dynamics. Such genetic studies 

should be utilised to develop efficient species-specific management plans for declining populations. 
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Enforcing these, in collaboration with legislative protection, is imperative for the conservation of 

marine populations (Neubauer et al. 2013).  
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Population Philippines 
Ashmore 

Reef 

Scott 

Reef 

Clerke 

Reef 

Imperieuse 

Reef 

Great Barrier 

Reef 

Osprey 

Reef 

Shark 

Reef 

Philippines (N = 27) - 0.015* 0.044* 0.014* 0.024* 0.130* 0.330* 0.237* 

Ashmore Reef (N = 29) 0.136* - 0.018* -0.004 0.006 0.121* 0.319* 0.228* 

Scott Reef (N = 30) 0.263* 0.097* - 0.015* 0.015* 0.173* 0.354* 0.268* 

Clerke Reef (N = 32) 0.114* -0.028 0.084* - 0.004 0.124* 0.322* 0.234* 

Imperieuse Reef (N = 

31) 
0.158* 0.044 0.111* -0.042 - 0.144* 0.343* 0.255* 

Great Barrier Reef (N = 

13) 
0.527* 0.485* 0.586* 0.494* 0.528* - 0.312* 0.229* 

Osprey Reef (N = 45) 0.693* 0.696* 0.740* 0.703* 0.745* 0.5* - 0.012 

Shark Reef (N = 8) 0.651* 0.612* 0.736* 0.678* 0.731* 0.483* -0.014 - 

 

 

 

 

       

Parameters Prior range Mean Median Mode HPD95 low HPD95 high 

ARGK Uniform [0 - 6] 1.78785 1.62815 1.35678 0.105534 3.72541 

MUTU Uniform [10
-6

 -  5×10
-4

] 5.00E-05 4.11E-05 2.61E-05 -2.53E-07 0.000122236 

NA Uniform [0 - 5×106] 2.17E+06 2.04E+06 1.31E+06 62816.9 4.51E+06 

N1 Uniform [0 - 5×10
6
] 3.08E+06 3.19E+06 3.79E+06 1.05E+06 4.99E+06 

N2 Uniform [0 - 5×106] 2.61E+06 2.56E+06 2.09E+06 665830 4.77E+06 

t Uniform [0 - 106] 353845 296495 105529 -2511.56 839452 
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