73 research outputs found

    Comprehensive review of several surfactants in marine environments: fate and ecotoxicity

    Get PDF
    Surfactants are a commercially important group of chemicals widely used on a global scale. Despite high removal efficiencies during wastewater treatment, their high consumption volumes mean that a certain fraction will always enter aquatic ecosystems, with marine environments being the ultimate sites of deposition. Consequently, surfactants have been detected within marine waters and sediments. However, aquatic environmental studies have mostly focused on the freshwater environment, and marine studies are considerably underrepresented by comparison. The present review aims to provide a summary of current marine environmental fate (monitoring, biodegradation, and bioconcentration) and effects data of 5 key surfactant groups: linear alkylbenzene sulfonates, alcohol ethoxysulfates, alkyl sulfates, alcohol ethoxylates, and ditallow dimethyl ammonium chloride. Monitoring data are currently limited, especially for alcohol ethoxysulfates and alkyl sulfates. Biodegradation was shown to be considerably slower under marine conditions, whereas ecotoxicity studies suggest that marine species are approximately equally as sensitive to these surfactants as freshwater species. Marine bioconcentration studies are almost nonexistent. Current gaps within the literature are presented, thereby highlighting research areas where additional marine studies should focus

    Functional traits of the world’s late Quaternary large-bodied avian and mammalian herbivores

    Full text link
    Prehistoric and recent extinctions of large-bodied terrestrial herbivores had significant and lasting impacts on Earth’s ecosystems due to the loss of their distinct trait combinations. The world’s surviving large-bodied avian and mammalian herbivores remain among the most threatened taxa. As such, a greater understanding of the ecological impacts of large herbivore losses is increasingly important. However, comprehensive and ecologically-relevant trait datasets for extinct and extant herbivores are lacking. Here, we present HerbiTraits, a comprehensive functional trait dataset for all late Quaternary terrestrial avian and mammalian herbivores ≄10 kg (545 species). HerbiTraits includes key traits that influence how herbivores interact with ecosystems, namely body mass, diet, fermentation type, habitat use, and limb morphology. Trait data were compiled from 557 sources and comprise the best available knowledge on late Quaternary large-bodied herbivores. HerbiTraits provides a tool for the analysis of herbivore functional diversity both past and present and its effects on Earth’s ecosystems

    Trophic rewilding presents regionally specific opportunities for mitigating climate change

    Get PDF
    Large-bodied mammalian herbivores can influence processes that exacerbate or mitigate climate change. Herbivore impacts are, in turn, influenced by predators that place top-down forcing on prey species within a given body size range. Here, we explore how the functional composition of terrestrial large herbivore and carnivore guilds vary between three mammal distribution scenarios: Present-Natural, Current-Day, and Extant-Native Trophic (ENT) Rewilding. Considering the effects of herbivore species weakly influenced by top-down forcing, we quantify the relative influence keystone large herbivore guilds have on methane emissions, woody vegetation expansion, fire dynamics, large-seed dispersal, and nitrogen and phosphorous transport potential. We find strong regional differences in the number of herbivores under weak top-down regulation between our three scenarios with important implications for how they will influence climate change relevant processes. Under the Present-Natural non-ruminant, megaherbivore, browsers were a particularly important guild across much of the world. Megaherbivore extinction and range contraction and the arrival of livestock means large, ruminant, grazers have become more dominant. ENT Rewilding can restore the Afrotropics and Indo-Malay to the Present-Natural benchmark, but causes top-down forcing of the largest herbivores to become common place elsewhere. ENT Rewilding will reduce methane emissions, but does not maximise Natural Climate Solution potential

    Reintroducing extirpated herbivores could partially reverse the late Quaternary decline of large and grazing species

    Get PDF
    Aim Reinstating large, native herbivores is an essential component of ecological restoration efforts, as these taxa can be important drivers of ecological processes. However, many herbivore species have gone globally or regionally extinct during the last 50,000 years, leaving simplified herbivore assemblages and trophically downgraded ecosystems. Here, we discuss to what extent trophic rewilding can undo these changes by reinstating native herbivores. Location Global. Time period We report functional trait changes from the Late Pleistocene to the present, and estimated trait changes under future scenarios. Major taxa studied Wild, large (≄ 10 kg), terrestrial, mammalian herbivores. Methods We use a functional trait dataset containing all late Quaternary large herbivores ≄ 10 kg to look at changes in the body mass and diet composition of herbivore assemblages, a proxy for species’ ecological effects. First, we assess how these traits have changed from the Late Pleistocene to the present. Next, we quantify how the current body mass and diet composition would change if all extant, wild herbivores were restored to their native ranges (and if no functional replacements were used), exploring scenarios with different baselines. Results Defaunation has primarily removed large and grazing herbivores. Reinstating extant herbivores across their native ranges would reverse these changes, especially when reinstating them to their prehistoric distributions. It would partially restore herbivore body mass and diet composition to pre‐anthropogenic conditions. However, in the absence of complementary interventions (e.g., introducing functional replacements), many herbivore assemblages would remain down‐sized and browser dominated, relative to pre‐anthropogenic conditions. Main conclusions Many terrestrial herbivore assemblages—and hence ecosystems—would remain trophically downgraded, even after bringing back all extant, native herbivores. Therefore, complementary interventions would be required to achieve complete functional restoration. Nevertheless, our findings suggest that reintroducing the remaining native herbivores would diversify the herbivory and disturbances of herbivore assemblages

    Introduced herbivores restore late pleistocene ecological functions

    Get PDF
    Large-bodied mammalian herbivores dominated Earth’s terrestrial ecosystems for several million years before undergoing substantial extinctions and declines during the Late Pleistocene (LP) due to prehistoric human impacts. The decline of large herbivores led to widespread ecological changes due to the loss of their ecological functions, as driven by their unique combinations of traits. However, recently, humans have significantly increased herbivore species richness through introductions in many parts of the world, potentially counteracting LP losses. Here, we assessed the extent to which introduced herbivore species restore lost—or contribute novel—functions relative to preextinction LP assemblages. We constructed multidimensional trait spaces using a trait database for all extant and extinct mammalian herbivores ≄10 kg known from the earliest LP (∌130,000 ybp) to the present day. Extinction-driven contractions of LP trait space have been offset through introductions by ∌39% globally. Analysis of trait space overlap reveals that assemblages with introduced species are overall more similar to those of the LP than native-only assemblages. This is because 64% of introduced species are more similar to extinct rather than extant species within their respective continents. Many introduced herbivores restore trait combinations that have the capacity to influence ecosystem processes, such as wildfire and shrub expansion in drylands. Although introduced species have long been a source of contention, our findings indicate that they may, in part, restore ecological functions reflective of the past several million years before widespread human-driven extinctions

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Influence of soil type and natural Zn chelates on flax response, tensile properties and soil Zn availability

    Full text link
    A greenhouse experiment was conducted on weakly acidic and calcareous soils to evaluate the relative efficiencies of three natural Zn chelates [Zn-aminelignosulphonate (Zn-AML), Zn-polyhydroxyphenylcarboxylate (Zn-PHP) and Zn-S,S-ethylenediaminedisuccinate (Zn-S,S-EDDS)] applied to a crop textile flax (Linum ussitatisimum L.) at application rates of 0, 5 and 10 mg Zn kg−1. In the flax plant, the following parameters were determined: dry matter yield, soluble and total Zn concentrations in leaf and stem, chlorophyll, crude fibre, and tensile properties. For the different soil samples, the following parameters were determined: available Zn (DTPA-AB and Mehlich-3 extractable Zn), easily leachable Zn (BaCl2-extractable Zn), the distribution of Zn fractions, pH and redox potential. On the basis of the use of added Zn by flax, or Zn utilization, it would seem recommendable to apply Zn-S,S-EDDS at the low Zn rate in both soils. In contrast, adding the high Zn rate of this chelate to the weakly acidic soil produced an excessive Zn concentration in the plant, which caused a significant decrease in both dry matter yield and chlorophyll content. Furthermore, assessing available Zn with the DTPA-AB method proved the best way of estimating the level of excess Zn in flax plants. The soluble Zn concentration, which was established with 2-(N-morpholino)ethanesulfonic acid reagent (MES), of plant fresh and dry matter could be used as an alternative way of diagnosing the nutritional status of Zn in flax plants. In this experiment, the highest soil pHs were associated with the lowest redox potentials, which coincided with the smallest amounts of available Zn and water soluble Zn in soil, and the lowest levels of Zn uptake by flax plants

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    This article has 730 authors, of which I have only listed the lead author and myself as a representative of University of HelsinkiPlant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.Peer reviewe

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    • 

    corecore