10 research outputs found

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    This article has 730 authors, of which I have only listed the lead author and myself as a representative of University of HelsinkiPlant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.Peer reviewe

    Trade-offs and synergies in the structural and functional characteristics of leaves photosynthesizing in aquatic environments

    No full text
    Aquatic plants, comprising different divisions of embryophytes, derive from terrestrial ancestors. They have evolved to live in water, both fresh and salty, an environment that presents unique challenges and opportunities for photosynthesis and growth. These include, compared to air, a low water stress, a greater density, and attenuation of light, and a more variable supply of inorganic carbon, both in concentration and chemical species, but overall a lower carbon availability, and the opportunity to take up nutrients from the water. The leaves of many aquatic plants are linear, dissected, whorled, or cylindrical with a large volume of air spaces. They tend to have a high specific leaf area, thin cuticles, and usually lack functional stomata. Exploiting the availability of chemicals in their environment, freshwater macrophytes may incorporate silica in their cell wall, while seagrasses contain sulphated polysaccharides, similar to those of marine macroalgae; both groups have low lignin content. This altered cell wall composition produces plants that are more flexible and therefore more resistant to hydraulic forces (mechanical stress arising from water movement). Aquatic plants may have enhanced light harvesting complexes conferring shade adaptation, but also have mechanisms to cope with high light. Aquatic plants have evolved numerous strategies to overcome potential carbon-limitation in water. These include growing in micro-environments where CO2 is high, producing leaves and roots that exploit CO2 from the air or sediment and operating concentrating mechanisms that increase CO2 (CCM) around the primary carboxylating enzyme, ribulose-1,5-bisphosphate carboxylase-oxygenase. These comprise C4 metabolism, crassulacean acid metabolism, and the ability to exploit the often high concentrations of HCO3−, and ~50% of freshwater macrophytes and ~85% of seagrasses have one or more CCM. Many of these adaptations involve trade-offs between conflictin constraints and opportunities while others represent ‘synergies’ that help to maximize the productivity of this important group of plants

    TRY plant trait database - enhanced coverage and open access

    No full text
    10.1111/gcb.14904GLOBAL CHANGE BIOLOGY261119-18
    corecore