25 research outputs found

    Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at sNN\sqrt{s_{_{\rm NN}}} = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in η<0.8|\eta|<0.8 and 0.3<pT<200.3 < p_T < 20 GeV/cc are compared to the expectation in pp collisions at the same sNN\sqrt{s_{\rm NN}}, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAAR_{\rm AA}. The result indicates only weak medium effects (RAAR_{\rm AA} \approx 0.7) in peripheral collisions. In central collisions, RAAR_{\rm AA} reaches a minimum of about 0.14 at pT=6p_{\rm T}=6-7GeV/cc and increases significantly at larger pTp_{\rm T}. The measured suppression of high-pTp_{\rm T} particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98

    Centrality dependence of the pseudorapidity density distribution for charged particles in Pb\u2013Pb collisions at 1asNN = 2.76 TeV

    Get PDF
    We present the first wide-range measurement of the charged-particle pseudorapidity density distribution, for different centralities (the 0\u20135%, 5\u201310%, 10\u201320%, and 20\u201330% most central events) in Pb\u2013Pb collisions at 1asNN = 2.76 TeV at the LHC. The measurement is performed using the full coverage of the ALICE detectors, 125.0 < \u3b7 < 5.5, and employing a special analysis technique based on collisions arising from LHC \u2018satellite\u2019 bunches. We present the pseudorapidity density as a function of the number of participating nucleons as well as an extrapolation to the total number of produced charged particles (Nch = 17 165 \ub1 772 for the 0\u20135% most central collisions). From the measured dNch/d\u3b7 distribution we derive the rapidity density distribution, dNch/dy, under simple assumptions. The rapidity density distribution is found to be significantly wider than the predictions of the Landau model. We assess the validity of longitudinal scaling by comparing to lower energy results from RHIC. Finally the mechanisms of the underlying particle production are discussed based on a comparison with various theoretical models

    Centrality, rapidity and transverse momentum dependence of J/\u3c8 suppression in Pb-Pb collisions at 1asNN= 2.76TeV

    Get PDF
    The inclusive J/.nuclear modification factor (R-AA) in Pb-Pb collisions at root(NN)-N-S = 2.76TeVhas been measured by ALICE as a function of centrality in the e+ e-decay channel at mid-rapidity (| y| < 0.8) and as a function of centrality, transverse momentum and rapidity in the + -decay channel at forward-rapidity (2.5 < y < 4). The J/.yields measured in Pb-Pb are suppressed compared to those in ppcollisions scaled by the number of binary collisions. The RAAintegrated over a centrality range corresponding to 90% of the inelastic Pb-Pb cross section is 0.72 - 0.06(stat.) - 0.10(syst.) at mid-rapidity and 0.58 - 0.01(stat.) - 0.09(syst.) at forward-rapidity. At low transverse momentum, significantly larger values of RAAare measured at forward-rapidity compared to measurements at lower energy. These features suggest that a contribution to the J/.yield originates from charm quark (re) combination in the deconfined partonic medium

    First proton-proton collisions at the LHC as observed with the ALICE detector: Measurement of the charged-particle pseudorapidity density at √s = 900 GeV

    Get PDF
    On 23rd November 2009, during the early commissioning of the CERN Large Hadron Collider (LHC), two counter-rotating proton bunches were circulated for the first time concurrently in the machine, at the LHC injection energy of 450 GeV per beam. Although the proton intensity was very low, with only one pilot bunch per beam, and no systematic attempt was made to optimize the collision optics, all LHC experiments reported a number of collision candidates. In the ALICE experiment, the collision region was centred very well in both the longitudinal and transverse directions and 284 events were recorded in coincidence with the two passing proton bunches. The events were immediately reconstructed and analyzed both online and offline. We have used these events to measure the pseudorapidity density of charged primary particles in the central region. In the range |η|<0.5, we obtain dNch/dη=3. 10±0. 13(stat.)±0. 22(syst.) for all inelastic interactions, and dNch/dη=3.51±0. 15(stat.)±0. 25(syst.) for non-single diffractive interactions. These results are consistent with previous measurements in proton-antiproton interactions at the same centre-of-mass energy at the CERN SppS̄ collider. They also illustrate the excellent functioning and rapid progress of the LHC accelerator, and of both the hardware and software of the ALICE experiment, in this early start-up phase

    Multiplicity dependence of pion, kaon, proton and lambda production in p–Pb collisions at √sNN = 5.02 TeV

    Get PDF
    Inthis Letter, comprehensive results on π±,K±,K0S, p(pbar) and Λ(Λbar) production at mid-rapidity (0< yCMS < 0.5) in p–Pb collisions at √sNN = 5.02 TeV, measured by the ALICE detector at the LHC, are reported. The transverse momentum distributions exhibit a hardening as a function of event multiplicity, which is stronger for heavier particles. This behavior is similar to what has been observed in pp and Pb–Pb collisions at the LHC. The measured pT distributions are compared to d–Au, Au–Au and Pb–Pb results at lower energy and with predictions based on QCD-inspired and hydrodynamic models

    Measurement of inclusive and leading subjet fragmentation in pp and Pb–Pb collisions at s NN sNN \sqrt{s_{\textrm{NN}}} = 5.02 TeV

    No full text
    Abstract This article presents new measurements of the fragmentation properties of jets in both proton–proton (pp) and heavy-ion collisions with the ALICE experiment at the Large Hadron Collider (LHC). We report distributions of the fraction z r of transverse momentum carried by subjets of radius r within jets of radius R. Charged-particle jets are reconstructed at midrapidity using the anti-k T algorithm with jet radius R = 0.4, and subjets are reconstructed by reclustering the jet constituents using the anti-k T algorithm with radii r = 0.1 and r = 0.2. In proton–proton collisions, we measure both the inclusive and leading subjet distributions. We compare these measurements to perturbative calculations at next-to-leading logarithmic accuracy, which suggest a large impact of threshold resummation and hadronization effects on the z r distribution. In heavy-ion collisions, we measure the leading subjet distributions, which allow access to a region of harder jet frag- mentation than has been probed by previous measurements of jet quenching via hadron fragmentation distributions. The z r distributions enable extraction of the parton-to-subjet fragmentation function and allow for tests of the universality of jet fragmentation functions in the quark–gluon plasma (QGP). We find no significant modification of z r distributions in Pb–Pb compared to pp collisions. However, the distributions are also consistent with a hardening trend for z r < 0.95, as predicted by several jet quenching models. As z r → 1 our results indicate that any such hardening effects cease, exposing qualitatively new possibilities to disentangle competing jet quenching mechanisms. By comparing our results to theoretical calculations based on an independent extraction of the parton-to-jet fragmentation function, we find consistency with the universality of jet fragmentation and no indication of factorization breaking in the QGP

    Measurement of the <math display="inline"><mrow><mi>J</mi><mo>/</mo><mi>ψ</mi></mrow></math> Polarization with Respect to the Event Plane in Pb-Pb Collisions at the LHC

    Get PDF
    International audienceWe study the polarization of inclusive J/ψ produced in Pb-Pb collisions at sNN=5.02  TeV at the LHC in the dimuon channel, via the measurement of the angular distribution of its decay products. We perform the study in the rapidity region 2.5&lt;y&lt;4, for three transverse momentum intervals (2&lt;pT&lt;4, 4&lt;pT&lt;6, 6&lt;pT&lt;10  GeV/c) and as a function of the centrality of the collision for 2&lt;pT&lt;6  GeV/c. For the first time, the polarization is measured with respect to the event plane of the collision, by considering the angle between the positive-charge decay muon in the J/ψ rest frame and the axis perpendicular to the event-plane vector in the laboratory system. A small transverse polarization is measured, with a significance reaching 3.9σ at low pT and for intermediate centrality values. The polarization could be connected with the behavior of the quark-gluon plasma, formed in Pb-Pb collisions, as a rotating fluid with large vorticity, as well as with the existence of a strong magnetic field in the early stage of its formation

    Measurement of the Lifetime and <math display="inline"><mi mathvariant="normal">Λ</mi></math> Separation Energy of <math display="inline"><mmultiscripts><mrow><mi mathvariant="normal">H</mi></mrow><mprescripts/><mrow><mi mathvariant="normal">Λ</mi></mrow><mn>3</mn></mmultiscripts></math>

    No full text
    International audienceThe most precise measurements to date of the HΛ3 lifetime τ and Λ separation energy BΛ are obtained using the data sample of Pb-Pb collisions at sNN=5.02  TeV collected by ALICE at the LHC. The HΛ3 is reconstructed via its charged two-body mesonic decay channel (HΛ3→He3+π- and the charge-conjugate process). The measured values τ=[253±11(stat)±6(syst)]  ps and BΛ=[102±63(stat)±67(syst)]  keV are compatible with predictions from effective field theories and confirm that the HΛ3 structure is consistent with a weakly bound system

    Study of charged particle production at high pT using event topology in pp, p–Pb and Pb–Pb collisions at √(sNN)=5.02 TeV

    No full text
    This letter reports measurements which characterize the underlying event associated with hard scatterings at mid-pseudorapidity (|η|<0.8) in pp, p–Pb and Pb–Pb collisions at centre-of-mass energy per nucleon pair, sNN=5.02 TeV. The measurements are performed with ALICE at the LHC. Different multiplicity classes are defined based on the event activity measured at forward rapidities. The hard scatterings are identified by the leading particle defined as the charged particle with the largest transverse momentum (pT) in the collision and having 8 <pT<15 GeV/c. The pT spectra of associated particles (0.5 ≤pT<6 GeV/c) are measured in different azimuthal regions defined with respect to the leading particle direction: toward, transverse, and away. The associated charged particle yields in the transverse region are subtracted from those of the away and toward regions. The remaining jet-like yields are reported as a function of the multiplicity measured in the transverse region. The measurements show a suppression of the jet-like yield in the away region and an enhancement of high-pT associated particles in the toward region in central Pb–Pb collisions, as compared to minimum-bias pp collisions. These observations are consistent with previous measurements that used two-particle correlations, and with an interpretation in terms of parton energy loss in a high-density quark gluon plasma. These yield modifications vanish in peripheral Pb–Pb collisions and are not observed in either high-multiplicity pp or p–Pb collisions

    Multiplicity dependence of charged-particle production in pp, p–Pb, Xe–Xe and Pb–Pb collisions at the LHC

    Get PDF
    Multiplicity (Nch) distributions and transverse momentum (pT) spectra of inclusive primary charged particles in the kinematic range of |η|<0.8 and 0.15 GeV/c<pT<10 GeV/c are reported for pp, p–Pb, Xe–Xe and Pb–Pb collisions at centre-of-mass energies per nucleon pair ranging from sNN=2.76 TeV up to 13 TeV. A sequential two-dimensional unfolding procedure is used to extract the correlation between the transverse momentum of primary charged particles and the charged-particle multiplicity of the corresponding collision. This correlation sharply characterises important features of the final state of a collision and, therefore, can be used as a stringent test of theoretical models. The multiplicity distributions as well as the mean and standard deviation derived from the pT spectra are compared to state-of-the-art model predictions. Providing these fundamental observables of bulk particle production consistently across a wide range of collision energies and system sizes can serve as an important input for tuning Monte Carlo event generators
    corecore