89 research outputs found

    Fluorescent nanoparticles for sensing

    Full text link
    Nanoparticle-based fluorescent sensors have emerged as a competitive alternative to small molecule sensors, due to their excellent fluorescence-based sensing capabilities. The tailorability of design, architecture, and photophysical properties has attracted the attention of many research groups, resulting in numerous reports related to novel nanosensors applied in sensing a vast variety of biological analytes. Although semiconducting quantum dots have been the best-known representative of fluorescent nanoparticles for a long time, the increasing popularity of new classes of organic nanoparticle-based sensors, such as carbon dots and polymeric nanoparticles, is due to their biocompatibility, ease of synthesis, and biofunctionalization capabilities. For instance, fluorescent gold and silver nanoclusters have emerged as a less cytotoxic replacement for semiconducting quantum dot sensors. This chapter provides an overview of recent developments in nanoparticle-based sensors for chemical and biological sensing and includes a discussion on unique properties of nanoparticles of different composition, along with their basic mechanism of fluorescence, route of synthesis, and their advantages and limitations

    Challenges in using land use and land cover data for global change studies

    Get PDF
    Land use and land cover data play a central role in climate change assessments. These data originate from different sources and inventory techniques. Each source of land use/cover data has its own domain of applicability and quality standards. Often data are selected without explicitly considering the suitability of the data for the specific application, the bias originating from data inventory and aggregation, and the effects of the uncertainty in the data on the results of the assessment. Uncertainties due to data selection and handling can be in the same order of magnitude as uncertainties related to the representation of the processes under investigation. While acknowledging the differences in data sources and the causes of inconsistencies, several methods have been developed to optimally extract information from the data and document the uncertainties. These methods include data integration, improved validation techniques and harmonization of classification systems. Based on the data needs of global change studies and the data availability, recommendations are formulated aimed at optimal use of current data and focused efforts for additional data collection. These include: improved documentation using classification systems for land use/cover data; careful selection of data given the specific application and the use of appropriate scaling and aggregation methods. In addition, the data availability may be improved by the combination of different data sources to optimize information content while collection of additional data must focus on validation of available data sets and improved coverage of regions and land cover types with a high level of uncertainty. Specific attention in data collection should be given to the representation of land management (systems) and mosaic landscape

    CD8+ T Cells and IFN-γ Mediate the Time-Dependent Accumulation of Infected Red Blood Cells in Deep Organs during Experimental Cerebral Malaria

    Get PDF
    Background: Infection with Plasmodium berghei ANKA (PbA) in susceptible mice induces a syndrome called experimental cerebral malaria (ECM) with severe pathologies occurring in various mouse organs. Immune mediators such as T cells or cytokines have been implicated in the pathogenesis of ECM. Red blood cells infected with PbA parasites have been shown to accumulate in the brain and other tissues during infection. This accumulation is thought to be involved in PbA–induced pathologies, which mechanisms are poorly understood. Methods and Findings: Using transgenic PbA parasites expressing the luciferase protein, we have assessed by real-time in vivo imaging the dynamic and temporal contribution of different immune factors in infected red blood cell (IRBC) accumulation and distribution in different organs during PbA infection. Using deficient mice or depleting antibodies, we observed that CD8 + T cells and IFN-c drive the rapid increase in total parasite biomass and accumulation of IRBC in the brain and in different organs 6–12 days post-infection, at a time when mice develop ECM. Other cells types like CD4 + T cells, monocytes or neutrophils or cytokines such as IL-12 and TNF-a did not influence the early increase of total parasite biomass and IRBC accumulation in different organs. Conclusions: CD8 + T cells and IFN-c are the major immune mediators controlling the time-dependent accumulation of P. berghei-infected red blood cells in tissues

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Molecular imprinting science and technology: a survey of the literature for the years 2004-2011

    Full text link
    corecore