58 research outputs found

    High-content analysis of neuronal morphology in human iPSC-derived neurons

    Get PDF
    We present a high-content analysis (HCA) protocol for monitoring the outgrowth capacity of human neurons derived from induced pluripotent stem cells (iPSCs). We describe steps to perform HCA imaging, followed by quantifying the morphology of dendrites and axons within a high-throughput system to evaluate neurons obtained through various differentiation approaches. This protocol can be used to screen for modulators of neuronal morphogenesis or neurotoxicity. The approach can be applied to patient-derived iPSCs to identify patient-specific defects and possible therapeutic strategies. For complete details on the use and execution of this protocol, please refer to Zink et al. (2020) and Inak et al. (2021). The protocol can be used in combination with Zink et al. (2022)

    A statistical method for retrospective cardiac and respiratory motion gating of interventional cardiac x-ray images

    Get PDF
    Purpose: Image-guided cardiac interventions involve the use of fluoroscopic images to guide the insertion and movement of interventional devices. Cardiorespiratory gating can be useful for 3D reconstruction from multiple x-ray views and for reducing misalignments between 3D anatomical models overlaid onto fluoroscopy. Methods: The authors propose a novel and potentially clinically useful retrospective cardiorespiratory gating technique. The principal component analysis (PCA) statistical method is used in combination with other image processing operations to make our proposed masked-PCA technique suitable for cardiorespiratory gating. Unlike many previously proposed techniques, our technique is robust to varying image-content, thus it does not require specific catheters or any other optically opaque structures to be visible. Therefore, it works without any knowledge of catheter geometry. The authors demonstrate the application of our technique for the purposes of retrospective cardiorespiratory gating of normal and very low dose x-ray fluoroscopy images. Results: For normal dose x-ray images, the algorithm was validated using 28 clinical electrophysiology x-ray fluoroscopy sequences (2168 frames), from patients who underwent radiofrequency ablation (RFA) procedures for the treatment of atrial fibrillation and cardiac resynchronization therapy procedures for heart failure. The authors established end-systole, end-expiration, and end-inspiration success rates of 97.0%, 97.9%, and 97.0%, respectively. For very low dose applications, the technique was tested on ten x-ray sequences from the RFA procedures with added noise at signal to noise ratio (SNR) values of √50, √10, √8, √6, √5, √2 and √1 to simulate the image quality of increasingly lower dose x-ray images. Even at the low SNR value of √2, representing a dose reduction of more than 25 times, gating success rates of 89.1%, 88.8%, and 86.8% were established. Conclusions: The proposed technique can therefore extract useful information from interventional x-ray images while minimizing exposure to ionizing radiation. © 2014 American Association of Physicists in Medicine

    Stroke risk associated with balloon based catheter ablation for atrial fibrillation: Rationale and design of the MACPAF Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Catheter ablation of the pulmonary veins has become accepted as a standard therapeutic approach for symptomatic paroxysmal atrial fibrillation (AF). However, there is some evidence for an ablation associated (silent) stroke risk, lowering the hope to limit the stroke risk by restoration of rhythm over rate control in AF. The purpose of the prospective randomized single-center study "Mesh Ablator versus Cryoballoon Pulmonary Vein Ablation of Symptomatic Paroxysmal Atrial Fibrillation" (MACPAF) is to compare the efficacy and safety of two balloon based pulmonary vein ablation systems in patients with symptomatic paroxysmal AF.</p> <p>Methods/Design</p> <p>Patients are randomized 1:1 for the Arctic Front<sup>® </sup>or the HD Mesh Ablator<sup>® </sup>catheter for left atrial catheter ablation (LACA). The predefined endpoints will be assessed by brain magnetic resonance imaging (MRI), neuro(psycho)logical tests and a subcutaneously implanted reveal recorder for AF detection. According to statistics 108 patients will be enrolled.</p> <p>Discussion</p> <p>Findings from the MACPAF trial will help to balance the benefits and risks of LACA for symptomatic paroxysmal AF. Using serial brain MRIs might help to identify patients at risk for LACA-associated cerebral thromboembolism. Potential limitations of the study are the single-center design, the existence of a variety of LACA-catheters, the missing placebo-group and the impossibility to assess the primary endpoint in a blinded fashion.</p> <p>Trial registration</p> <p>clinicaltrials.gov NCT01061931</p

    Elucidating variations in the nucleotide sequence of Ebola virus associated with increasing pathogenicity

    Get PDF
    Background Ebolaviruses cause a severe and often fatal haemorrhagic fever in humans, with some species such as Ebola virus having case fatality rates approaching 90%. Currently, the worst Ebola virus outbreak since the disease was discovered is occurring in West Africa. Although thought to be a zoonotic infection, a concern is that with increasing numbers of humans being infected, Ebola virus variants could be selected which are better adapted for human-to-human transmission. Results To investigate whether genetic changes in Ebola virus become established in response to adaptation in a different host, a guinea pig model of infection was used. In this experimental system, guinea pigs were infected with Ebola virus (EBOV), which initially did not cause disease. To simulate transmission to uninfected individuals, the virus was serially passaged five times in naïve animals. As the virus was passaged, virulence increased and clinical effects were observed in the guinea pig. An RNAseq and consensus mapping approach was then used to evaluate potential nucleotide changes in the Ebola virus genome at each passage. Conclusions Upon passage in the guinea pig model, EBOV become more virulent, RNA editing and also coding changes in key proteins become established. The data suggest that the initial evolutionary trajectory of EBOV in a new host can lead to a gain in virulence. Given the circumstances of the sustained transmission of EBOV in the current outbreak in West Africa, increases in virulence may be associated with prolonged and uncontrolled epidemics of EBOV

    2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary.

    Get PDF
    S

    withdrawn 2017 hrs ehra ecas aphrs solaece expert consensus statement on catheter and surgical ablation of atrial fibrillation

    Get PDF
    n/

    The impact of self-assembling peptides on neurite growth of mouse primary neurons

    No full text

    Effective Binding of a Phosphatidylserine-Targeting Antibody to Ebola Virus Infected Cells and Purified Virions

    No full text
    Ebola virus is responsible for causing severe hemorrhagic fevers, with case fatality rates of up to 90%. Currently, no antiviral or vaccine is licensed against Ebola virus. A phosphatidylserine-targeting antibody (PGN401, bavituximab) has previously been shown to have broad-spectrum antiviral activity. Here, we demonstrate that PGN401 specifically binds to Ebola virus and recognizes infected cells. Our study provides the first evidence of phosphatidylserine-targeting antibody reactivity against Ebola virus
    • …
    corecore