241 research outputs found

    Genetic variation of wild and hatchery populations of the catla Indian major carp (Catla catla Hamilton 1822: Cypriniformes, Cyprinidae) revealed by RAPD markers

    Get PDF
    Genetic variation is a key component for improving a stock through selective breeding programs. Randomly amplified polymorphic DNA (RAPD) markers were used to assess genetic variation in three wild population of the catla carp (Catla catla Hamilton 1822) in the Halda, Jamuna and Padma rivers and one hatchery population in Bangladesh. Five decamer random primers were used to amplify RAPD markers from 30 fish from each population. Thirty of the 55 scorable bands were polymorphic, indicating some degree of genetic variation in all the populations. The proportion of polymorphic loci and gene diversity values reflected a relatively higher level of genetic variation in the Halda population. Sixteen of the 30 polymorphic loci showed a significant (p < 0.05, p < 0.01, p < 0.001) departure from homogeneity and the FST values in the different populations indicated some degree of genetic differentiation in the population pairs. Estimated genetic distances between populations were directly correlated with geographical distances. The unweighted pair group method with averages (UPGMA) dendrogram showed two clusters, the Halda population forming one cluster and the other populations the second cluster. Genetic variation of C. catla is a useful trait for developing a good management strategy for maintaining genetic quality of the species

    Local Spatial and Temporal Processes of Influenza in Pennsylvania, USA: 2003–2009

    Get PDF
    Background: Influenza is a contagious respiratory disease responsible for annual seasonal epidemics in temperate climates. An understanding of how influenza spreads geographically and temporally within regions could result in improved public health prevention programs. The purpose of this study was to summarize the spatial and temporal spread of influenza using data obtained from the Pennsylvania Department of Health's influenza surveillance system. Methodology and Findings: We evaluated the spatial and temporal patterns of laboratory-confirmed influenza cases in Pennsylvania, United States from six influenza seasons (2003-2009). Using a test of spatial autocorrelation, local clusters of elevated risk were identified in the South Central region of the state. Multivariable logistic regression indicated that lower monthly precipitation levels during the influenza season (OR = 0.52, 95% CI: 0.28, 0.94), fewer residents over age 64 (OR = 0.27, 95% CI: 0.10, 0.73) and fewer residents with more than a high school education (OR = 0.76, 95% CI: 0.61, 0.95) were significantly associated with membership in this cluster. In addition, time series analysis revealed a temporal lag in the peak timing of the influenza B epidemic compared to the influenza A epidemic. Conclusions: These findings illustrate a distinct spatial cluster of cases in the South Central region of Pennsylvania. Further examination of the regional transmission dynamics within these clusters may be useful in planning public health influenza prevention programs. © 2012 Stark et al

    Calpain inhibition mediates autophagy-dependent protection against polyglutamine toxicity.

    Get PDF
    Over recent years, accumulated evidence suggests that autophagy induction is protective in animal models of a number of neurodegenerative diseases. Intense research in the field has elucidated different pathways through which autophagy can be upregulated and it is important to establish how modulation of these pathways impacts upon disease progression in vivo and therefore which, if any, may have further therapeutic relevance. In addition, it is important to understand how alterations in these target pathways may affect normal physiology when constitutively modulated over a long time period, as would be required for treatment of neurodegenerative diseases. Here we evaluate the potential protective effect of downregulation of calpains. We demonstrate, in Drosophila, that calpain knockdown protects against the aggregation and toxicity of proteins, like mutant huntingtin, in an autophagy-dependent fashion. Furthermore, we demonstrate that, overexpression of the calpain inhibitor, calpastatin, increases autophagosome levels and is protective in a mouse model of Huntington's disease, improving motor signs and delaying the onset of tremors. Importantly, long-term inhibition of calpains did not result in any overt deleterious phenotypes in mice. Thus, calpain inhibition, or activation of autophagy pathways downstream of calpains, may be suitable therapeutic targets for diseases like Huntington's disease.This is the published version of the manuscript. It is available online from NPG in Cell Death and Differentiaiton here: http://www.nature.com/cdd/journal/vaop/ncurrent/full/cdd2014151a.html

    Quantitative Historical Change in Bumblebee (Bombus spp.) Assemblages of Red Clover Fields

    Get PDF
    Flower visiting insects provide a vitally important pollination service for many crops and wild plants. Recent decline of pollinating insects due to anthropogenic modification of habitats and climate, in particular from 1950's onwards, is a major and widespread concern. However, few studies document the extent of declines in species diversity, and no studies have previously quantified local abundance declines. We here make a quantitative assessment of recent historical changes in bumblebee assemblages by comparing contemporary and historical survey data. species observed in the 1930's, five species were not observed at present. The latter were all long-tongued, late-emerging species.Because bumblebees are important pollinators, historical changes in local bumblebee assemblages are expected to severely affect plant reproduction, in particular long-tubed species, which are pollinated by long-tongued bumblebees

    Human Skeletal Muscle Mitochondrial Uncoupling Is Associated with Cold Induced Adaptive Thermogenesis

    Get PDF
    Background: Mild cold exposure and overfeeding are known to elevate energy expenditure in mammals, including humans. This process is called adaptive thermogenesis. In small animals, adaptive thermogenesis is mainly caused by mitochondrial uncoupling in brown adipose tissue and regulated via the sympathetic nervous system. In humans, skeletal muscle is a candidate tissue, known to account for a large part of the epinephrine-induced increase in energy expenditure. However, mitochondrial uncoupling in skeletal muscle has not extensively been studied in relation to adaptive thermogenesis in humans. Therefore we hypothesized that cold-induced adaptive thermogenesis in humans is accompanied by an increase in mitochondrial uncoupling in skeletal muscle. Methodology/Principal Findings: The metabolic response to mild cold exposure in 11 lean, male subjects was measured in a respiration chamber at baseline and mild cold exposure. Skeletal muscle mitochondrial uncoupling (state 4) was measured in muscle biopsies taken at the end of the respiration chamber stays. Mild cold exposure caused a significant increase in 24h energy expenditure of 2.8 % (0.32 MJ/day, range of 20.21 to 1.66 MJ/day, p,0.05). The individual increases in energy expenditure correlated to state 4 respiration (p,0.02, R 2 = 0.50). Conclusions/Significance: This study for the first time shows that in humans, skeletal muscle has the intrinsic capacity for cold induced adaptive thermogenesis via mitochondrial uncoupling under physiological conditions. This opens possibilitie

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
    • …
    corecore