61 research outputs found

    HeLM: a macrophyte-based method for monitoring and assessment of Greek lakes

    Get PDF
    Zervas, D., Tsiaoussi, V. & Tsiripidis, I. HeLM: a macrophyte-based method for monitoring and assessment of Greek lakes. Environ Monit Assess 190, 326 (2018). https://doi.org/10.1007/s10661-018-6708-

    Report on the development of the national assessment method for the ecological status of natural lakes in Greece, using the Biological Quality Element “Macrophytes” (Hellenic Lake Macrophytes-HeLM assessment method)

    Get PDF
    This report discusses the development of the national ecological assessment method for Greek natural lakes, based on the Biological Quality Element (BQE) “macrophytes”. Due to lack of a common natural lake type within the Mediterranean Lake Geographical intercalibration Group, there has not been a Med GIG Intercalibration Exercise for macrophytes in natural lakes. As a result, there are neither proposed assessment methods with common boundaries within the Med GIG, nor proposed metrics for the assessment of lakes based on macrophytes. It is noted that at the Mediterranean Lake Phytoplankton GIG Intercalibration Report, Member States defined two common water body types (L-M5/7 and L-M8) for reservoirs but none for natural lakes. The operation of the Greek water monitoring network started in 2012, following the publication of a Joint Ministerial Decision in 2011. The development of the current assessment method, as described in this report, is based on the data from this national water monitoring network. In particular, 50 lake water bodies (including 26 reservoirs) have been included in the monitoring network, out of which 16 have been monitored for macrophytes during the 3-year period of 2013-2015. Eight of them are warm monomictic, deep natural lakes with mean depth >9m (GR-DNL), when the other eight are polymictic, shallow natural lakes with mean depth 3-9m (GR-SNL). In these 16 lakes, a total of 272 monitoring sites were established for sampling macrophytes, which resulted in an equal number of macrophytic sampling transects, the data of which have been added in the national dataset. Thirty six of these sites were revisited during the 3-year period, and a total of 308 measurements of maximum macrophytic colonization depth were made. On this national dataset, the most suitable lake macrophyte based assessment components proposed by WISER deliverables D3.2-1 (Kolada et al., 2009), D3.2-2 (Dudley et al., 2011) and D3.2-3 (Kolada et al., 2011) were tested, in various combinations, so as to reach a final form that can be used as a national assessment method for Greece. As already mentioned, this is the first effort to establish a national method, which may need additions and improvements in the future, as well as intercalibration exercises among Member States in the Mediterranean GIG

    A phytosociological survey of aquatic vegetation in the main freshwater lakes of Greece. Vegetation

    Get PDF
    Zervas D, Tsiripidis I, Bergmeier E, Tsiaoussi V (2020) A phytosociological survey of aquatic vegetation in the main freshwater lakes of Greece. Vegetation Classification and Survey 1: 53-75. https://doi.org/10.3897/VCS/2020/48377This study aims to contribute to the knowledge of European freshwater lake ecosystems with updated and new information on aquatic plant communities, by conducting national-scale phytosociological research of freshwater lake vegetation in Greece. Moreover, it investigates the relationship between aquatic plant communities and lake environmental parameters, including eutrophication levels and hydro-morphological conditions. Study area: Lakes in Greece, SE Europe

    insights into assembly processes

    Get PDF
    Changes in species diversity following volcanic eruptions have been studied extensively, but our knowledge on functional diversity and community assembly under such conditions is very limited. Here, we study the processes following the destruction of vegetation after a volcanic eruption. Specifically, we investigate (1) the temporal patterns of taxonomic and functional diversity over time since a previous eruption (alpha diversity) and beta diversity, (2) the temporal patterns of 26 individual traits (vegetative characteristics, plant taxa ecological preferences, and regenerative characteristics) providing more detailed information on species strategies at the initial and later stages of succession, and (3) the processes driving species assembly and whether they changed over time since the eruption an eruption. We analyzed data recorded during five floristic censuses that took place between 1911 and 2011, calculated alpha and beta facets of taxonomic and functional diversity and examined how community structure changed over time, using 26 functional characteristics, based on their ability to discern primary from later colonists, including longevity, growth form, Ellenberg's indicator values, seed production and weight, flower size and sex, pollination type, and dispersal mode. Null model analysis was used to test whether the observed functional diversity deviates from random expectations. Alpha diversity, both taxonomic and functional, increased over time after an eruption, while beta diversity did not display a clear trend. This finding indicates that mainly abiotic processes determine species assembly over time after an eruption (at least for the time span studied here), contrary to theoretical expectations. It is most interesting that, simultaneously, some aspects of diversity indicated the effect of biotic interactions (facilitation and competition) on the assembly of species a few years after an eruption. This finding implies a legacy effect, since a high percentage of perennial species was noticed in the assemblage right after the eruption, as well as the effect of the harsh environmental conditions on the assembly of the plant communities. In conclusion, our results indicate the role of legacy effects in succession (most probably through the survival of underground plant parts) and underline the importance of disturbance history in providing the context needed for understanding effects of past events on succession

    Database Species-Area Relationships in Palaearctic Grasslands.

    Get PDF
    The database collects the data resulting from the sampling of species-area relationships (SARs) in grassland communities in the Palaearctic. The core features of the database are the complete data from the EDGG Research Expeditions, but similar data from other studies are also included. Main features of the majority of relevĂ©s are: (i) they are part of nested-plot series (typically 0.0001-100 mÂČ), (ii) bryophytes and lichens are treated comprehensively; (iii) detailed soil and other environmental data

    Euro plus Med-Checklist Notulae, 11

    Get PDF
    This is the eleventh of a series of miscellaneous contributions, by various authors, where hitherto unpublished data relevant to both the Med-Checklist and the Euro+Med (or Sisyphus) projects are presented. This instalment deals with the families Anacardiaceae, Asparagaceae (incl. Hyacinthaceae), Bignoniaceae, Cactaceae, Compositae, Cruciferae, Cyperaceae, Ericaceae, Gramineae, Labiatae, Leguminosae, Orobanchaceae, Polygonaceae, Rosaceae, Solanaceae and Staphyleaceae. It includes new country and area records and taxonomic and distributional considerations for taxa in Bidens, Campsis, Centaurea, Cyperus, Drymocallis, Engem, Hoffmannseggia, Hypopitys, Lavandula, Lithraea, Melilotus, Nicotiana, Olimarabidopsis, Opuntia, Orobanche, Phelipanche, Phragmites, Rumex, Salvia, Schinus, Staphylea, and a new combination in Drimia.Peer reviewe

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    European Red List of Habitats Part 2. Terrestrial and freshwater habitats

    Get PDF

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    This article has 730 authors, of which I have only listed the lead author and myself as a representative of University of HelsinkiPlant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.Peer reviewe

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    • 

    corecore