11 research outputs found

    Multiple roles for frequenin/NCS-1 in synaptic function and development

    No full text
    The calcium-binding protein frequenin (Frq), discovered in the fruit fly Drosophila, and its mammalian homologue neuronal calcium sensor 1 (NCS-1) have been reported to affect several aspects of synaptic transmission, including basal levels of neurotransmission and short- and long-term synaptic plasticities. However, discrepant reports leave doubts about the functional roles of these conserved proteins. In this review, we attempt to resolve some of these seemingly contradictory reports. We discuss how stimulation protocols, sources of calcium (voltage-gated channels versus internal stores), and expression patterns (presynaptic versus postsynaptic) of Frq may result in the activation of various protein targets, leading to different synaptic effects. In addition, the potential interactions of Frq's C-terminal and N-terminal domains with other proteins are discussed. Frq also has a role in regulating neurite outgrowth, axonal regeneration, and synaptic development. We examine whether the effects of Frq on neurotransmitter release and neurite outgrowth are distinct or interrelated through homeostatic mechanisms. Learning and memory are affected by manipulations of Frq probably through changes in synaptic transmission and neurite outgrowth, raising the possibility that Frq may be implicated in human pathological conditions, including schizophrenia, bipolar disorder, and X-linked mental retardation. © Springer Science+Business Media, LLC 2012.Peer Reviewe

    Chronic and acute alterations in the functional levels of Frequenins 1 and 2 reveal their roles in synaptic transmission and axon terminal morphology

    No full text
    Frequenin (Frq) and its mammalian homologue, neuronal calcium sensor 1 (NCS-1), are important calcium-binding proteins which enhance neurotransmitter release and facilitation. Here, we report the discovery of a second Frq-encoding gene (frq2) in Drosophila. The temporal and spatial expression patterns of the two genes are very similar, and the proteins they encode, Frq1 and Frq2, are 95% identical in amino acid sequence. Frq1 is more abundant than Frq2, and is most highly expressed in larva. Loss-of-function phenotypes were studied using dominant negative peptides to prevent Frq target binding, RNAi to reduce gene transcription, or both methods. To discriminate chronic from acute loss-of-function effects, we compared the effects of transgenic expression and forward-filling the dominant-negative peptide into presynaptic terminals. In both cases, a 70% reduction in quantal content per bouton occurred, demonstrating that this trait does not result from homeostatic adaptations of the synapse during development. The chronic treatment also produced more synaptic boutons from MNSNb/d-Is motorneurons, but fewer active zones per bouton. By contrast, excess-of-function conditions yielded a 1.4- to 2-fold increase in quantal content and fewer boutons in the same motorneuron. These synaptic effects resulted in behavioural changes in the Buridan locomotion assay, showing that walking speed is dependent on Frq activity in the nervous system. All the effects were identical for both Frqs, and consistent with excess- and loss-of-function genotypes. We conclude that Frqs have two distinct functions: one in neurotransmission, regulating the probability of release per synapse, and another in axonal growth and bouton formation. © The Authors (2007).Peer Reviewe

    Frequenin/NCS-1 and the Ca2+-channel α1-subunit co-regulate synaptic transmission and nerve-terminal growth

    No full text
    Drosophila Frequenin (Frq) and its mammalian and worm homologue, NCS-1, are Ca2+-binding proteins involved in neurotransmission. Using site-specific recombination in Drosophila, we created two deletions that removed the entire frq1 gene and part of the frq2 gene, resulting in no detectable Frq protein. Frq-null mutants were viable, but had defects in larval locomotion, deficient synaptic transmission, impaired Ca2+ entry and enhanced nerve-terminal growth. The impaired Ca2+ entry was sufficient to account for reduced neurotransmitter release. We hypothesized that Frq either modulates Ca2+ channels, or that it regulates the PI4Kβ pathway as described in other organisms. To determine whether Frq interacts with PI4K. with consequent effects on Ca2+ channels, we first characterized a PI4Kβ-null mutant and found that PI4Kβ was dispensable for synaptic transmission and nerve-terminal growth. Frq gain-of-function phenotypes remained present in a PI4Kβ-null background. We conclude that the effects of Frq are not due to an interaction with PI4Kβ. Using flies that were trans-heterozygous for a null frq allele and a null cacophony (encoding the α1-subunit of voltage-gated Ca2+ channels) allele, we show a synergistic effect between these proteins in neurotransmitter release. Gain-of-function Frq phenotypes were rescued by a hypomorphic cacophony mutation. Overall, Frq modulates Ca2+ entry through a functional interaction with the voltage-gated Ca2+-channel subunit; this interaction regulates neurotransmission and nerveterminal growth.Peer Reviewe

    The guanine-exchange factor Ric8a binds to the Ca2+ sensor NCS-1 to regulate synapse number and neurotransmitter release

    No full text
    © 2014. Published by The Company of Biologists Ltd. The conserved Ca2+-binding protein Frequenin (homolog of the mammalian NCS-1, neural calcium sensor) is involved in pathologies that result from abnormal synapse number and probability of neurotransmitter release per synapse. Both synaptic features are likely to be co-regulated but the intervening mechanisms remain poorly understood. We show here that Drosophila Ric8a (a homolog of mammalian synembryn, which is also known as Ric8a), a receptor-independent activator of G protein complexes, binds to Frq2 but not to the virtually identical homolog Frq1. Based on crystallographic data on Frq2 and site-directed mutagenesis on Frq1, the differential amino acids R94 and T138 account for this specificity. Human NCS-1 and Ric8a reproduce the binding and maintain the structural requirements at these key positions. Drosophila Ric8a and Gas regulate synapse number and neurotransmitter release, and both are functionally linked to Frq2. Frq2 negatively regulates Ric8a to control synapse number. However, the regulation of neurotransmitter release by Ric8a is independent of Frq2 binding. Thus, the antagonistic regulation of these two synaptic properties shares a common pathway, Frq2- Ric8a-Gαs, which diverges downstream. These mechanisms expose the Frq2-Ric8a interacting surface as a potential pharmacological target for NCS-1-related diseases and provide key data towards the corresponding drug design.Peer Reviewe

    Determinants and Consequences of Corporate Tax Avoidance

    No full text

    Gene-centric meta-analyses of 108 912 individuals confirm known body mass index loci and reveal three novel signals.

    No full text

    References

    No full text

    Canada

    No full text

    Canada

    No full text

    Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma.

    Get PDF
    Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10(-8) to P = 10(-190)). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, including genes involved in biliary transport (ATP8B1 and ABCB11), glucose, carbohydrate and lipid metabolism (FADS1, FADS2, GCKR, JMJD1C, HNF1A, MLXIPL, PNPLA3, PPP1R3B, SLC2A2 and TRIB1), glycoprotein biosynthesis and cell surface glycobiology (ABO, ASGR1, FUT2, GPLD1 and ST3GAL4), inflammation and immunity (CD276, CDH6, GCKR, HNF1A, HPR, ITGA1, RORA and STAT4) and glutathione metabolism (GSTT1, GSTT2 and GGT), as well as several genes of uncertain or unknown function (including ABHD12, EFHD1, EFNA1, EPHA2, MICAL3 and ZNF827). Our results provide new insight into genetic mechanisms and pathways influencing markers of liver function
    corecore