565 research outputs found

    Recombinant human interferon alpha 2b prevents and reverses experimental pulmonary hypertension

    Get PDF
    Pulmonary hypertension (PH) is a progressive and fatal disease with no cure. Vascular remodeling in PH involves intraluminal growth of endothelial and smooth muscle cells, leading to obliterative vascular lesions. Cell growth in these lesions is quasi-neoplastic, with evidence of monoclonality, apoptosis resistance and cancer-like metabolic derangements. Herein we tested the effect of human interferon alpha 2b (IFNα), a pleiotropic cytokine and anti-cancer therapeutic, on the development and progression of PH in the rat SU5416/hypoxia (SUH) model and mouse hypoxia model of the disease. In both models IFNα attenuated the development of PH and reversed established PH as assessed by measuring right ventricular systolic pressure and right ventricular hypertrophy. The effect of IFNα was dependent on the type I interferon receptor (IFNAR) since mice lacking a subunit of the IFNAR were not protected by IFNα. Morphometric analysis of pulmonary aterioles from hypoxic mice or SUH rats showed that IFNα inhibited pulmonary vascular remodeling in both models and that IFNα reversed remodeling in SUH rats with established disease. Immunohistochemical staining revealed that IFNα decreased the number of PCNA and Tunel positive cells in the wall of pulmonary arterioles. In vitro, IFNα inhibited proliferation of human pulmonary artery smooth muscle cells and as well as human pulmonary artery endothelial cell proliferation and apoptosis. Together these findings demonstrate that IFNα reverses established experimental PH and provide a rationale for further exploration of the use of IFNα and other immunotherpies in PH. © 2014 Bauer et al

    Albumin-based cancer therapeutics for intraperitoneal drug delivery : a review

    Get PDF
    Albumin is a remarkable carrier protein with multiple cellular receptor and ligand binding sites, which are able to bind and transport numerous endogenous and exogenous compounds. The development of albumin-bound drugs is gaining increased importance in the targeted delivery of cancer therapy. Intraperitoneal (IP) drug delivery represents an attractive strategy for the local treatment of peritoneal metastasis (PM). PM is characterized by the presence of widespread metastatic tumor nodules on the peritoneum, mostly originating from gastro-intestinal or gynaecological cancers. Albumin as a carrier for chemotherapy holds considerable promise for IP delivery in patients with PM. Data from recent (pre)clinical trials suggest that IP albumin-bound chemotherapy may result in superior efficacy in the treatment of PM compared to standard chemotherapy formulations. Here, we review the evidence on albumin-bound chemotherapy with a focus on IP administration and its efficacy in PM

    Novel role for the innate immune receptor toll-like receptor 4 (TLR4) in the regulation of the wnt signaling pathway and photoreceptor apoptosis

    Get PDF
    Recent evidence has implicated innate immunity in regulating neuronal survival in the brain during stroke and other neurodegenerations. Photoreceptors are specialized light-detecting neurons in the retina that are essential for vision. In this study, we investigated the role of the innate immunity receptor TLR4 in photoreceptors. TLR4 activation by lipopolysaccharide (LPS) significantly reduced the survival of cultured mouse photoreceptors exposed to oxidative stress. With respect to mechanism, TLR4 suppressed Wnt signaling, decreased phosphorylation and activation of the Wnt receptor LRP6, and blocked the protective effect of the Wnt3a ligand. Paradoxically, TLR4 activation prior to oxidative injury protected photoreceptors, in a phenomenon known as preconditioning. Expression of TNFα and its receptors TNFR1 and TNFR2 decreased during preconditioning, and preconditioning was mimicked by TNFα antagonists, but was independent of Wnt signaling. Therefore, TLR4 is a novel regulator of photoreceptor survival that acts through the Wnt and TNFα pathways. © 2012 Yi et al

    AAAS joins the Translational Medicine family

    Get PDF
    The AAAS has announced the launch of Science Translational Medicine. This is further and critical recognition of this discipline and we are deeply gratified that translational medicine has risen to the level of recognition by one of the world's most prestigious scientific organizations. We believe that Science Translational Medicine will provide another valuable venue for the rapid and broad dissemination of important articles in the field and contribute to enhancing the effectiveness of translational medicine overall

    Neuropathic Pain in Rats with a Partial Sciatic Nerve Ligation Is Alleviated by Intravenous Injection of Monoclonal Antibody to High Mobility Group Box-1

    Get PDF
    High mobility group box-1 (HMGB1) is associated with the pathogenesis of inflammatory diseases. A previous study reported that intravenous injection of anti-HMGB1 monoclonal antibody significantly attenuated brain edema in a rat model of stroke, possibly by attenuating glial activation. Peripheral nerve injury leads to increased activity of glia in the spinal cord dorsal horn. Thus, it is possible that the anti-HMGB1 antibody could also be efficacious in attenuating peripheral nerve injury-induced pain. Following partial sciatic nerve ligation (PSNL), rats were treated with either anti-HMGB1 or control IgG. Intravenous treatment with anti-HMGB1 monoclonal antibody (2 mg/kg) significantly ameliorated PSNL-induced hind paw tactile hypersensitivity at 7, 14 and 21 days, but not 3 days, after ligation, whereas control IgG had no effect on tactile hypersensitivity. The expression of HMGB1 protein in the spinal dorsal horn was significantly increased 7, 14 and 21 days after PSNL; the efficacy of the anti-HMGB1 antibody is likely related to the presence of HMGB1 protein. Also, the injury-induced translocation of HMGB1 from the nucleus to the cytosol occurred mainly in dorsal horn neurons and not in astrocytes and microglia, indicating a neuronal source of HMGB1. Markers of astrocyte (glial fibrillary acidic protein (GFAP)), microglia (ionized calcium binding adaptor molecule 1 (Iba1)) and spinal neuron (cFos) activity were greatly increased in the ipsilateral dorsal horn side compared to the sham-operated side 21 days after PSNL. Anti-HMGB1 monoclonal antibody treatment significantly decreased the injury-induced expression of cFos and Iba1, but not GFAP. The results demonstrate that nerve injury evokes the synthesis and release of HMGB1 from spinal neurons, facilitating the activity of both microglia and neurons, which in turn leads to symptoms of neuropathic pain. Thus, the targeting of HMGB1 could be a useful therapeutic strategy in the treatment of chronic pain

    Clearance kinetics and matrix binding partners of the receptor for advanced glycation end products

    Get PDF
    Elucidating the sites and mechanisms of sRAGE action in the healthy state is vital to better understand the biological importance of the receptor for advanced glycation end products (RAGE). Previous studies in animal models of disease have demonstrated that exogenous sRAGE has an anti-inflammatory effect, which has been reasoned to arise from sequestration of pro-inflammatory ligands away from membrane-bound RAGE isoforms. We show here that sRAGE exhibits in vitro binding with high affinity and reversibly to extracellular matrix components collagen I, collagen IV, and laminin. Soluble RAGE administered intratracheally, intravenously, or intraperitoneally, does not distribute in a specific fashion to any healthy mouse tissue, suggesting against the existence of accessible sRAGE sinks and receptors in the healthy mouse. Intratracheal administration is the only effective means of delivering exogenous sRAGE to the lung, the organ in which RAGE is most highly expressed; clearance of sRAGE from lung does not differ appreciably from that of albumin. Copyright: © 2014 Milutinovic et al

    Human breast cancer-derived soluble factors facilitate CCL19-induced chemotaxis of human dendritic cells

    Get PDF
    Breast cancer remains as a challenging disease with high mortality in women. Increasing evidence points the importance of understanding a crosstalk between breast cancers and immune cells, but little is known about the effect of breast cancer-derived factors on the migratory properties of dendritic cells (DCs) and their consequent capability in inducing T cell immune responses. Utilizing a unique 3D microfluidic device, we here showed that breast cancers (MCF-7, MDA-MB-231, MDA-MB-436 and SK-BR-3)-derived soluble factors increase the migration of DCs toward CCL19. The enhanced migration of DCs was mainly mediated via the highly activated JNK/c-Jun signaling pathway, increasing their directional persistence, while the velocity of DCs was not influenced, particularly when they were co-cultured with triple negative breast cancer cells (TNBCs or MDA-MB-231 and MDA-MB-436). The DCs up-regulated inflammatory cytokines IL-1?? and IL-6 and induced T cells more proliferative and resistant against activation-induced cell death (AICD), which secret high levels of inflammatory cytokines IL-1??, IL-6 and IFN-??. This study demonstrated new possible evasion strategy of TNBCs utilizing their soluble factors that exploit the directionality of DCs toward chemokine responses, leading to the building of inflammatory milieu which may support their own growth.ope

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Development and characterisation of a large diameter decellularised vascular allograft

    Get PDF
    The aims of this study were to develop a biological large diameter vascular graft by decellularisation of native human aorta to remove the immunogenic cells whilst retaining the essential biomechanical, and biochemical properties for the ultimate benefit of patients with infected synthetic grafts. Donor aortas (n = 6) were subjected to an adaptation of a propriety decellularisation process to remove the cells and acellularity assessed by histological analysis and extraction and quantification of total DNA. The biocompatibility of the acellular aortas was determined using standard contact cytotoxicity tests. Collagen and denatured collagen content of aortas was determined and immunohistochemistry was used to determine the presence of specific extracellular matrix proteins. Donor aortas (n = 6) were divided into two, with one half subject to decellularisation and the other half retained as native tissue. The native and decellularised aorta sections were then subject to uniaxial tensile testing to failure [axial and circumferential directions] and suture retention testing. The data was compared using a paired t-test. Histological evaluation showed an absence of cells in the treated aortas and retention of histoarchitecture including elastin content. The decellularised aortas had less than 15 ng mg¯¹ total DNA per dry weight (mean 94% reduction) and were biocompatible as determined by in vitro contact cytotoxicity tests. There were no gross changes in the histoarchitecture [elastin and collagen matrix] of the acellular aortas compared to native controls. The decellularisation process also reduced calcium deposits within the tissue. The uniaxial tensile and suture retention testing revealed no significant differences in the material properties (p > 0.05) of decellularised aorta. The decellularisation procedure resulted in minimal changes to the biological and biomechanical properties of the donor aortas. Acellular donor aorta has excellent potential for use as a large diameter vascular graft
    corecore