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Abstract

Pulmonary hypertension (PH) is a progressive and fatal disease with no cure. Vascular remodeling in PH involves
intraluminal growth of endothelial and smooth muscle cells, leading to obliterative vascular lesions. Cell growth in these
lesions is quasi-neoplastic, with evidence of monoclonality, apoptosis resistance and cancer-like metabolic derangements.
Herein we tested the effect of human interferon alpha 2b (IFNa), a pleiotropic cytokine and anti-cancer therapeutic, on the
development and progression of PH in the rat SU5416/hypoxia (SUH) model and mouse hypoxia model of the disease. In
both models IFNa attenuated the development of PH and reversed established PH as assessed by measuring right
ventricular systolic pressure and right ventricular hypertrophy. The effect of IFNa was dependent on the type I interferon
receptor (IFNAR) since mice lacking a subunit of the IFNAR were not protected by IFNa. Morphometric analysis of
pulmonary aterioles from hypoxic mice or SUH rats showed that IFNa inhibited pulmonary vascular remodeling in both
models and that IFNa reversed remodeling in SUH rats with established disease. Immunohistochemical staining revealed
that IFNa decreased the number of PCNA and Tunel positive cells in the wall of pulmonary arterioles. In vitro, IFNa inhibited
proliferation of human pulmonary artery smooth muscle cells and as well as human pulmonary artery endothelial cell
proliferation and apoptosis. Together these findings demonstrate that IFNa reverses established experimental PH and
provide a rationale for further exploration of the use of IFNa and other immunotherpies in PH.
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Introduction

Pulmonary Hypertension (PH) is a devastating disease charac-

terized by increased pulmonary artery pressure, right ventricular

(RV) failure and death. Although the natural history of the disease

is incompletely understood, the traditional view is that endothelial

dysfunction and upregulation of pulmonary vasoconstrictors leads

to pulmonary vasoconstriction and increased pulmonary artery

(PA) pressure. In addition, several pulmonary vasoconstrictors are

also smooth muscle cell (SMC) mitogens [1] and prolonged

exposure to these vasoconstrictors results in hypertrophy and

proliferation of medial SMC [2].

In severe disease the PAs of PH patients exhibit invasive growth

of endothelial cells (EC) into the vessel lumen resulting in luminal

obstruction by clusters of ECs known as plexiform lesions. EC

growth in plexiform lesions is aberrant with some areas containing

a solid core of ECs and others exhibiting various stages of

angiogenesis [3]. In addition, there is evidence of EC monoclon-

ality [4], resistance of ECs to apoptosis [5], and a cancer-like shift

to glycolysis [6] within plexiform lesions. Thus, the vascular lesions

in PH exhibit several hallmarks of cancer [7]. These findings

represent a major paradigm shift in PH research, which has relied

on models of hypoxic vasoconstriction, and indicate that concepts

derived from the cancer field should be considered when

developing PH therapeutics [4].

Type I interferons (IFN), were identified in 1957 by Isaacs and

Lindenmann based on the ability to inhibit viral replication [8,9].

The type I IFN family of at least 15 subtypes includes the IFNa
family of 13 functional subtypes of IFNa, IFN-b, and IFNv [10].

The individual IFNa subtypes share the same receptor and exhibit

similar biological activities [10]. Type I interferons exhibit a

variety of biological effects in addition to those on viral replication,

including antitumor activity, anti-angiogenic activity, and utility in

multiple sclerosis [11]. Today, IFNa is the most widely used

therapeutic cytokine in patients.

Little is known about the effect of IFNa on the pathogenesis of

pulmonary hypertension. There are case studies of patients

receiving IFNa therapy for the treatment of hepatitis C or chronic

myelogenous leukemia developing reversible or irreversible PH

[12–14]. On the other hand IFNa has been used to treat PH

associated with pulmonary capillary hemangiomatosis [15,16]. In

several instances IFNa stabilized or caused regression of pulmo-

nary capillary hemangiomatosis associated PH.

The goal of the present study was to evaluate the effect of IFNa
on experimental PH. Based on the case studies demonstrating

IFNa-induced PH, and our data showing activation of interferon
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response factor-3 in PH our original hypothesis was that IFNa
would exacerbate experimental PH. Instead, we found that, in

both the mouse model of chronic hypoxia and the rat model of

SU5416 plus chronic hypoxia, IFNa not only attenuated the

development of PH, but also reversed established disease.

Methods

Human IPAH cells and serum samples were obtained in

compliance with University of Pittsburgh Institutional Review

Board (IRB) guidelines and the studies were approved by
the University of Pittsburgh IRB. All patients gave written

consent. Animal studies were approved by the University of

Pittsburgh Institutional Animal Care and Use Committee

(University of Pittsburgh Animal Assurance # A3187–01).

Animal Use
C57BL/6J mice were purchased from The Jackson Laboratory

(Bar Harbor, ME) and 129S6/SvEvTac WT mice were purchased

from Taconic Farms (Watertown, NY). IFNAR-deficient mice

(IFN-IR2/2129S6) were a kind gift of Akiko Iwasaki (Yale

University, New Haven, CT) [17]. Age-matched 8- to 12-wk-old

male mice were used for the studies. 225–250 g Sprague Dawley

rats purchased from Charles Rivers were used for the studies.

Chronic Hypoxia Mouse Model
Eight to ten week old male mice were placed into a partially

ventilated Plexiglas chamber (Biospherix,) and exposed to chronic

hypoxia (FIO2= 0.10, 90% nitrogen) for 21 or 42 days under

normobaric conditions. Mice maintained in room air served as

normoxic controls. For all mouse studies mice were treated with

daily subcutaneous injections of 104 IU human recombinant

interferon alpha 2b (Intron A; Schering Corporation, Kenilworth,

NJ). The dose of interferon alpha 2b was chosen based on a search

of the literature [18,19]. The interferon was reconstituted using

sterile water for injection, USP provided by the manufacturer and

was stored at 4uC after reconstitution per the manufacturer’s

instructions.

Rat SU5416/Hypoxia Model
225–250 g male Sprague Dawley Rats were injected with a

single dose of 20 mg/kg s.c. SU-5416 (A VEGF receptor inhibitor)

or vehicle and were placed into a partially ventilated Plexiglas

chamber (Biospherix,) and exposed to chronic hypoxia

(FIO2= 0.10, 90% nitrogen) for 21 days under normobaric

conditions. Rats maintained in room air served as controls. Some

Rats were returned to room air on day 22, and maintained in

normoxia for an additional 14 days. For rat studies animals were

treated with daily subcutaneous injections of 105 IU human

recombinant interferon alpha 2b. This dose was chosen to

approximately match the dose given to mice. The interferon was

prepared and stored as described above for the chronic hypoxia

mouse model.

Right Ventricular Systolic Pressure
Right ventricular systolic pressure (RVSP) was measured

essentially as described [20]. Briefly, mice or rats were anesthe-

tized with sodium pentobarbital (60 mg/kg i.p. mice; 40 mg/kg

i.p. rats) and ventilated via tracheotomy with room air. Body

temperature was monitored and regulated with a rectal temper-

ature probe and heating pad. RVSP was determined by placing a

1 F solid-state pressure-transducing catheter (Millar Instruments,

Houston, TX, USA) directly into the right ventricle (RV). Data

were acquired using a PowerLab data acquisition system and

LabChart Pro software (AD Instruments).

Right Ventricular Hypertrophy
Following hemodynamic measurements the vasculature was

flushed with PBS, the heart was excised and right heart

hypertrophy was determined by the ratio of the weight of the

RV to the left ventricle (LV) plus septum (Fulton index) or the

ration of weight of the RV to body weight. The right lung was tied

off, dissected and flash frozen, and the left lung was perfused with

paraformaldehyde (4%) for embedding in paraffin.

Assessment of Pulmonary Vascular Remodeling
For mice, pulmonary vascular remodeling was assessed by

counting the number of partially and fully muscularized peripheral

arterioles (35–100 mm) per high-power field (2006 total magni-

fication). For each mouse, at least 20 high-power fields were

analyzed in multiple lung sections. Wall thickness % was

determined by measuring the thickness at four points on

pulmonary arterioles using the Java-based image-processing

program ImageJ (National Institutes of Health, Bethesda, MD,

USA). Vascular occlusion was assessed in a blinded fashion by

grading at least 50 small (,50 mm) pulmonary arterioles in at least

3 lung tissue samples per group.

Serum IFNa.
Serum IFNa was measured using commercially available

ELISA kits ((R&D Systems, Minneapolis, MN).

Immunohistochemistry
Paraffin-embedded lung sections (5 mm) were baked 60 min at

55uC, deparaffinized in xylenes and rehydrated through decreas-

ing alcohol concentrations (three xylenes, 26100%, 1695%,

1690%, 1670% ethanol, 16PBS, for 3 min each) followed by

antigen retrieval citrate buffer by using a microwave. Smooth

Figure 1. Schema of IFNa treatment protocols. (A) Schema of
prevention and therapeutic protocols for IFNa treatment in SU5416/
hypoxia-induced PH in rats. (B) Schema of prevention and therapeutic
protocols for IFNa treatment in hypoxia-induced PH in mice.
doi:10.1371/journal.pone.0096720.g001
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muscle a-actin staining was performed as described [21].

TUNNEL staining was performed using the Chemicon kit

(S7100) using AEC (Vector) as color reagent and slides were

counterstained using hematoxylin. PCNA (sc-7907, Santa Cruz)

staining was done using the Elite Vectastain ABC kit (rabbit igG

PK-6101) with DAB to obtain a color reaction.

Cultured Cells
Control Human pulmonary artery endothelial cells (HPAECs)

and human pulmonary artery smooth muscle cells (HPASMC)

were from Lonza. Control and IPAH HPAEC were cultured in

EBM2 media and HPASMC were cultured in SBM2 (Lonza)

containing the recommended serum and growth factors. Cells

were used between passages 4 and 9.

Cell Proliferation
Briefly, HPAEC or HPASMC were serum-starved for 24 h in

12-well plates and treated with the indicated doses of IFNa with or

without VEGF (50 ng/ml) or platelet-derived growth factor

(PDGF) (10 ng/mL, Sigma P4056) for 24 h in the presence

0.2 mCi [3H] thymidine. Cell Proliferation was then determined

by measuring [3H] incorporation as previously described [21].

Western Blotting
30 mg of cell lysate was separated by SDS-PAGE and

transferred to nitrocellulose membranes. Membranes were

blocked in TBST (Tris-buffered saline, 0.1% Tween 20), 5%

nonfat dry milk for 30 min, followed by incubation in primary

antibody overnight. Membranes were washed in TBST before

incubation for 1 h with horseradish peroxidase conjugated

secondary antibodies. Membranes were washed and developed

using enhanced chemiluminescence substrate (Pierce). Blots were

probed against p21 (#sc-397 Santa Cruz), stat3 (#9132 Cell

Signaling), phospho-Stat3 (9131 Cell Signaling), Stat1 (sc-98783

Santa Cruz), phospho-Stat1 (7649 Cell Signaling), Phospho-Akt

(9271 Cell Signaling), Akt (61086 BD Transduction Laboratories),

b-actin (4967 Cell Signaling).

Statistical Analysis
Statistical analyses were performed by using Graphpad Prism

software. Data were analyzed by one-way ANOVA and Tukey’s

post hoc tests. P values of ,0.05 were considered significant.

Results

Treatment with IFNa improves hemodynamics in two
animal models of PH
To examine the effect of IFNa on experimental PH we

employed the rat model of SU5416/Hypoxia-induced PH

(SUH). SUH rats were randomly assigned to a 3-week

‘‘prevention protocol’’ or a 5 week ‘‘therapeutic protocol’’

(Fig. 1A). In the prevention protocol, rats received a single

injection of SU5416 (20 mg/kg s.c.) and were placed in hypoxia

for 3 weeks (10% O2). These rats received daily injections of

IFNa (105 IU/day, s.c.) or sterile saline (vehicle) for the

duration of the experiment. For the therapeutic protocol, the

SUH rats were given a single injection of SU5416, exposed to

3-weeks of hypoxia and then returned to normoxia for 2 weeks.

These rats were given daily injections IFNa (105 IU/day, s.c.)

or vehicle during the 2 week normoxic period. Rats maintained

Figure 2. IFNa prevents and reverses experimental PH. (A) Effect of IFNa on RVSP and (B, C) RVH in SUH rats treated with IFNa or vehicle (n = 6
rats per group). (D–F) Representative Images of hearts from normoxic, 5 week SUH, and 5 week SUH rats treated with IFNa. Effect of IFNa on (G) RVSP
and (H–I) RVH in hypoxic mice treated with IFNa or vehicle (n = 8 mice per group). Analysis of variance *P,0.05.
doi:10.1371/journal.pone.0096720.g002
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in normoxia served as controls. Treatment of SUH rats with

IFNa using the prevention protocol attenuated the development

of PH, as evidenced by decreased right ventricular systolic

pressure (RVSP) and decreased right ventricular hypertrophy

(RVH) compared to vehicle treated animals (Fig. 2A–1C).
More importantly, IFNa treatment of SUH rats with established

PH (therapeutic protocol) decreased RVSP and RVH compared

with untreated SUH rats assessed for PH at 3 or 5 weeks

(Fig. 2A–1C). Visual inspection of hearts from SUH rats

further suggests that the hearts from 5-week SUH rats

demonstrate increased RV dilatation compared with hearts

from 3-weeks SUH rats, which was prevented by therapeutic

IFNa (Fig. 2D–F).

To further explore the effect of IFNa in PH we also utilized the

mouse model of hypoxia-induced PH. Mice were exposed to

hypoxia for 3 weeks with or without concomitant IFNa (104 I.U./

day, s.c.). To establish the efficacy of IFNa on established disease,

mice were exposed to 6 weeks of hypoxia and treated daily with

IFNa (104 I.U./day, s.c.) from week 4 through week 6

(Figure 1B). Mice maintained in normoxia served as controls.

Treatment of mice with IFNa using the prevention or therapeutic

protocol resulted in decreased disease severity as assessed by

measuring RVSP and RVH (Fig. 2G–I). Importantly, in the

therapeutic protocol, IFNa treated mice exhibited improvement

when compared with the 3-week hypoxic mice demonstrating

disease reversal.

Exogenous IFNa acts via the type I interferon receptor
Human recombinant IFNa exhibits reduced activity in rodents.

To demonstrate that our results were not due to off-target effects of

IFNa but occur via activation of the type I interferon receptor

(IFNAR) we examined whether 1) human IFNa could elicit a

typical type I interferon signaling response in rats and mice and 2)

whether genetic deletion of a subunit of the type I interferon

receptor could prevent the effect of IFNa in hypoxic mice. As

expected of a type I IFN response, IFNa increased phosphoryla-

tion of STAT1 in both SUH rats (Fig. 3A, C) and hypoxic mice

(Fig. 3B, D).

We next explored the effect of deleting the IFNAR1 subunit of

the type I interferon receptor on the effect of IFNa in hypoxic

mice. Deletion of this subunit abrogates type I interferon signaling

in response to mouse IFNa. Exposure of WT or IFNAR1 2/2

mice to 3-weeks hypoxia led to increased RVSP and RVH

compared with normoxic controls (Fig. 4A, B). However, while

treatment of WT mice with IFNa resulted in decreased RVSP and

RVH, IFNa had no effect in IFNAR1 2/2 mice demonstrating

that human IFNa requires the type I interferon receptor in mice

(Fig. 4A, B). These findings further demonstrate that endogenous

IFNa does not affect disease development or progression in this

model since there was no effect of IFNAR1 deletion on RVSP or

RVH in hypoxic IFNAR1 2/2 mice. This was despite the fact

that IFNa mRNA in lung and circulating IFNa was elevated in

CH mice after 21 days. We also determined the circulating levels

of IFNa in control human (n= 8) vs. IPAH patient (n = 13) serum

and found no difference.

Figure 3. Human IFNa stimulates STAT1 phosphorylation in
mice and rats. WB analysis of STAT1, phospho-STAT1 in whole lung
homogenates from: (A) normoxic rats, 5 week SUH rats, and 5 week
SUH rats treated with IFNa (n = 4 rats per group); or (B) normoxic mice,
6 week hypoxic mice, and 6 week hypoxic mice treated with IFNa.
Densitometric ratio of phospho-STAT1 to STAT1 and phospho-STAT3 to
STAT3 in lung tissue of different treatment groups in (C) SUH rats and
(D) hypoxic mice.
doi:10.1371/journal.pone.0096720.g003

Figure 4. Human IFNa attenuates PH in mice in a IFNAR-
dependent fashion. Effect of IFNa on (A) RVSP and (B) RVH in
normoxic and hypoxic WT or IFNAR1 2/2 mice (n = 6 mice per group).
(C) Relative expression of IFNa (normalized to GAPDH) in total lung
from C57BL/6J mice exposed to 0, 7, or 21 days of CH as determined by
qRT-PCR. (D) Serum concentration of IFNa in C57BL/6J mice exposed to
0, 7, or 21 days CH as determined by ELISA. n = 8 animals per group.
Analysis of variance *P,0.05. (E) Serum concentration of IFNa in control
vs. IPAH human serum as determined by ELISA.
doi:10.1371/journal.pone.0096720.g004
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Treatment with IFNa regresses pulmonary vascular
remodeling
SU5416 with concurrent hypoxic exposure for 3 weeks caused

severe PH with occlusive lesions in rats, which progressed in

animals that were returned to normoxia for an additional

two weeks. The proportion of vessels (#50 um) that were

occluded greater than 50% was less in the 3-week SUH or 5-

week SUH treated with IFNa compared with untreated SUH rats

(Fig. 5A, B). The 5-week SUH rats treated with IFNa also had a

lower proportion of vessels that were occluded more than 50%

when compared to 3-week SUH rats. This was associated with an

increase in non-occluded vessels in IFNa treated vs. untreated

SUH rats. Likewise, medial wall thickness of pulmonary arterioles

(#100 um) was less in the IFNa treated SUH rats and

demonstrated reverse remodeling when comparing IFNa treated

5-week SUH rats to untreated 3-week SUH rats (Fig. 5C, 3D).

IFNa inhibits vascular cell proliferation in vivo and in vitro
Pulmonary vascular remodeling in SUH rats is characterized by

increased proliferation of vascular smooth muscle and endothelial

cells. Thus, we observed increased expression of proliferating cell

nuclear antigen (PCNA) in the vessel wall of both 3 week and

5 week SUH rats. Consistent with the anti-proliferative effects of

IFNa we observed less PCNA staining in the wall of pulmonary

arterioles from SUH rats treated with IFNa (Fig. 6A–D). WB

analysis confirmed the finding of increased PCNA in SUH rats

and suppression of PCNA expression by IFNa (Fig. 6E–F).
Furthermore, expression of the cyclin dependent kinase inhibitor

p21 was decreased in SUH rats and IFNa increased p21

expression in SUH rats (Fig. 6E–F). Consistent with our finding

of decreased number of proliferating cells in IFNa treated rats,

IFNa dose-dependently inhibited the proliferation of human

pulmonary artery smooth muscle cells (HPASMC) and human

pulmonary artery endothelial cells (HPAEC) (Fig. 6G–H) from
both control and IPAH patients.

Decreased apoptotic cells in the pulmonary vascular wall
of SUH rats treated with IFNa
Because decreased proliferation can not fully explain our

observation of reverse remodeling in IFNa treated SUH rats, we

were interested in the effect of IFNa on pulmonary vascular cell

apoptosis. There was increased number of TUNEL positive cells

in the vessel wall of both 3 wk and 5 wk SUH rats when compared

with normoxic controls. Treatment of SUH rats with IFNa caused

a striking decrease in the number of TUNEL positive cells in the

vessel wall using both the prevention and therapeutic protocol

(Fig. 7A–I). Increased apoptosis in SUH rats was associated with

decreased anti-apoptotic signaling as indicated by decreased AKT

phosphorylation, which was reversed by IFNa treatment (Fig. 7J).
In cultured cells, we found no effect of IFNa on HPASMC

apoptosis (Fig. 7K–L) whereas IFNa potently inhibited apoptosis

of control HPAEC, but not IPAH HPAEC, in response to serum

starvation or the combination of cycloheximide and hydrogen

peroxide (Fig. 7M–N).

Discussion

IFNa belongs to a family of cytokines participating in innate

immunity against viruses and other pathogens. IFNa also has

anti-tumor activities due to its anti-proliferative, anti-angiogenic

and immune-regulatory properties [22,23]. Two isoforms of

IFNa, IFNa 2a and IFNa 2b (used in this study), are used

clinically for the treatment of Hepatitis B and C as well as

various cancers. The seminal finding of this study is that IFNa

Figure 5. IFNa prevents and reverses pulmonary vascular remodeling in SUH rats. (A) Representative photomicrographs of small
pulmonary arterioles (#50 mm) from an SUH rat with vascular occlusion (V.O.) of 0%, ,50%, and .50%. (B) Percent of small pulmonary arterioles (#
50 mm) with V.O. 0%, ,50%, or .50% in SUH treatment groups (50 arterioles per animal, n = 4 animals per group). (C) Representative
photomicrographs of pulmonary arterioles (#100 mm) from SUH treatment groups demonstrating differences in wall thickness. (D) % Wall thickness
in pulmonary arterioles (#100 mm) from SUH treatment groups (20 arterioles per animal, n = 4 animals per group).
doi:10.1371/journal.pone.0096720.g005
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2b attenuates the onset of PH and more excitingly causes

regression of established PH in two experimental animal models

of the disease. Of particular interest are our findings that IFNa
can cause regression of established PH in SUH rats since the

resulting hemodynamic and histopathologic changes in this

model most closely mimic those in human PH [24,25].

In this study we demonstrate that, in two rodent models of

PH, IFNa significantly reduced RVSP and RVH compared

with vehicle-treated animals. Importantly, we also demonstrate

that SUH rats or hypoxic mice treated with IFNa using our

therapeutic protocol showed significant improvements in RVSP

and RVH when compared with the 3 week control animals

demonstrating reversal of established disease. The positive

changes in hemodynamics and RVH were accompanied by

decreased pulmonary vascular remodeling and perivascular

inflammation. In the rat SUH model, treatment with IFNa

led to a decrease in the number of occlusive lesions in both

treated groups compared with vehicle. Importantly, in 5-week

SUH rats we found less occlusive lesions when compared with

SUH 3-week control animals. Similarly, we observed a decrease

in medial wall thickness of SUH rats treated with IFNa, again
with evidence of reverse remodeling in the 5-week SUH rats.

The effect of IFNa on pulmonary vascular remodeling was

accompanied by reduced numbers of PCNA-positive cells in

pulmonary arterioles from IFNa treated animals demonstrating

decreased pulmonary vascular cell proliferation in vivo. In vitro

experiments further demonstrated that IFNa directly inhibits

proliferation of both HPAEC and HPASMC from control or

IPAH patients. While the anti-proliferative effect of IFNa is

sufficient to explain the suppression of pulmonary vascular

remodeling in prevention groups, it cannot completely explain

reverse remodeling in the SUH therapeutic groups.

Figure 6. IFNa inhibits pulmonary vascular cell proliferation. (A–D) Representative 40x images of lung sections from 3 week SUH rat, 3 week
SUH rat + IFNa, 5 weeks SUH rat, and 5 week SUH rats+ IFNa stained for PCNA (brown) as an indicator of proliferating cells. WB analysis for PCNA and
p21 in whole lung lysates from (E) 3-week SUH rats or (F) 5-week SUH rats with or without IFNa (n = 4 animals per group). (G) Control or IPAH
HPASMC were serum starved 24 h and then stimulated with PDGF (10 ng/ml) with or without increasing IFNa for 24 hours. (H) Control or IPAH
HPAEC were serum starved overnight and then stimulated with VEGF (50 ng/ml) with or without increasing IFNa for 24 hours. Proliferation was
assessed by measuring [H3]-thymidine incorporation. Analysis of variance *P,0.05.
doi:10.1371/journal.pone.0096720.g006
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This led us to explore the effect of IFNa on apoptosis. In our in

vitro studies we found that while IFNa had no effect on control or

IPAH HPASMC, IFNa inhibited apoptosis in control HPAEC but

not in ECs from IPAH patients. As was previously demonstrated

the IPAH HPAEC were somewhat resistant to apoptosis as

compared to control [26], which may partially explain why IFNa
had no effect on these cells. These results suggest that IFNa may

prevent or attenuate apoptosis of healthy endothelium helping to

preserve normal endothelial function. Despite these in vitro results

demonstrating decreased EC apoptosis, it was somewhat surpris-

ing to find a striking decrease in TUNEL positive cells in the

pulmonary vascular wall of SUH rats treated with IFNa. We had

anticipated that reverse remodeling requires increased apoptosis.

There are several possible explanations for these observations.

Studies demonstrate that EC apoptosis contributes to pathologic

remodeling in the SUH model of pulmonary hypertension and

that caspase inhibition ameliorates PH in this model [27]. Thus,

direct inhibition of EC apoptosis is likely to play a role in the

therapeutic effects observed in response to IFNa. We also cannot

rule out the possibility that in the therapeutic model there was an

early increase in apoptosis in response to IFNa that resolved

before endpoint measurements were made.

Another interesting possibility is the idea that phagocytosis of

apoptotic cells (efferocytosis) is impaired in the SUH model and

Figure 7. IFNa reduces the number of TUNEL positive cells in the pulmonary arterioles of SUH rats and inhibits HPAEC apoptosis.
Representative photomicrographs of pulmonary arterioles stained for TUNEL (red) and nuclei (blue) in (A) normoxic control rats; (B, C) 3 week SUH
rats; (D, E) 3 week SUH rats treated with IFNa; (F, G) 5 week SUH rats; and (H, I) 5 week SUH rats treated with IFNa. Photomicrographs are
representative of 4–6 animals per group. (J) WB analysis for total AKT and phospho-AKT in whole lung lysates from 3-week SUH rats or 5-week SUH
rats with or without IFNa (n = 4 animals per group). Control or IPAH HPASMC were grown in complete media and apoptosis was induced by (K) serum
starvation or (L) cycloheximide plus hydrogen peroxide with or without IFNa. Control or IPAH HPAEC were grown in complete media and apoptosis
was induced by (M) serum starvation or (N) cycloheximide plus hydrogen peroxide. Percent apoptotic cells was assessed by the ratio of TUNEL
positive nuclei to total nuclei.
doi:10.1371/journal.pone.0096720.g007
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that IFNa stimulates efferocytosis. The number of apoptotic cells

in a tissue is affected both by the rate of apoptosis and the rate of

efferocytosis by macrophages and resident cells. Apoptotic cells

that are not cleared become necrotic causing release of pro-

inflammatory molecules [28]. Impaired efferocytosis is linked to

the pathogenesis of chronic vascular and pulmonary inflammatory

diseases including atherosclerosis [29], systemic lupus erythema-

tosus, chronic obstructive pulmonary disease (COPD) [30,31],

cystic fibrosis [32] and asthma [33,34]. Interestingly, in a 2006

review article Vandivier et al. reported that efferocytosis is

impaired in a SU5416 model of COPD [28]. In addition, we

recently demonstrated a role for high mobility group box 1 in the

pathogenesis of PH [35,36], and high mobility group box 1

inhibits efferocytosis [37–39]. In contrast, efferocytosis suppresses

innate immunity and promotes its resolution by suppressing the

expression of inflammatory mediators [40]. To that end, IFNa
increases phagocytosis by macrophages [41,42] suggesting that the

effect of IFNa in SUH rats may be partially attributable to

stimulation of efferocytosis. Additional studies are needed to

address the role of apoptosis and efferocytosis in the effect of IFNa
on PH and in the pathogenesis of the disease itself.

IFNa is a pleiotropic cytokine that affects many cell types. Thus,

it is likely that other cell types beyond those explored in this study

are involved in the effect of IFNa in these models of PH. Of

interest is the possibility that the effects of IFNa may be mediated

by activation of natural killer cells. Ormiston et al. recently

demonstrated impairment of natural killer cell phenotype and

function in PH patients, hypoxia-induced PH in mice, and

monocrotaline-induced PH in rats [43]. In contrast, IFNa
augments natural killer cell cytotoxicity and up-regulates expres-

sion of cytolytic effectors Fas-L and perforin [44,45]. It is tempting

to hypothesize that the effect IFNa has on pulmonary vascular

remodeling is partly due to increased natural killer cell function.

Despite our finding that IFNa prevents and reverses experi-

mental pulmonary hypertension in 2 distinct models, chronic

treatment with IFNa for hepatitis C or chronic myelogenous

leukemia was associated with the onset of PH in humans and the

Food and Drug Administration has labeled IFNa with a warning

about the risk of PH with its use. Recently, Dhillon et al. [12]

reported four cases of PH in hepatitis C patients treated with IFN-

a. Two of the patients were non-cirrhotic and two were post-liver

transplant. Other causes of PH including portopulmonary

hypertension and were ruled out. The authors suggest the

acceleration of a previously subclinical phenomenon caused by

factors such as human herpes virus 8, hepatitis C virus, or genetic

predisposition [12] as potential mechanisms. Another case report

described reversible PH in a chronic myelogenous leukemia

patient treated with IFNa. Interestingly, there are several case

reports of chronic myelogenous leukemia patients developing PH

after treatment with the tyrosine kinase inhibitor dasatinib [46–48]

and, like IFNa, dasatinib has been shown to reverse experimental

PH [49]. The fact that these two unrelated drugs lead to the

development of PH in chronic myelogenous leukemia, but reverse

experimental PH suggests that some feature of chronic myelog-

enous leukemia renders a fraction of these patients susceptible to

PH. In either case, PH remains a rare complication of these drugs

suggesting individual and/or disease-related susceptibility to PH.

In terms of a role for endogenous IFNa in the development of

PH we found that despite a slight elevation in circulating levels of

IFNa in mice after 21 days of CH that deletion of IFNAR1

subunit of the type I interferon receptor had no effect on the

progression of PH. Interestingly this is different from what was

recently reported by George et al. where they found that deletion

of this subunit protected mice from the development of chronic

hypoxia-induced PH. In this study they also report that IFNAR1 is

upregulated in Systemic Sclerosis patients with PH and that

Interferon Regulated Protein 10 (IP10) correlated positively with

pulmonary hemodynamics and serum brain natriuretic peptide

and negatively with 6-minute walk test and cardiac index [50].

The correlation of IP10 with PH in SSC patients has also been

shown by another group, however, that group and another failed

to find a direct correlation between circulating IFNa and PH in

SSC patients [51,52]. We also found no evidence for increased

circulating IFNa in a limited number of IPAH patients.

To our knowledge this is only the second demonstration of

disease reversal in the SUH rat model of PH. While case studies

suggest that IFNa therapy may cause pulmonary hypertension,

our data raise legitimate questions as to the role of IFNa in this

process. IFNa is a pleiotropic cytokine that mediates a wide range

of biological effects including, anti-proliferative, anti-angiogenic

and anti-tumor activities, which theoretically could provide benefit

to PH patients. The reversal of PH with an immunotherapeutic

modality is novel and provides proof of principle that immuno-

therapy can have a positive impact on PH progression. While

evidence of IFNa-induced PH in humans might mean that IFNa
will never be used to treat human PH our results warrant further

investigation of IFNa and other immunotherapeutics in PH.
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