21 research outputs found
EFFECT OF PEG COATING ON NANOPARTICLE DIFFUSION THROUGH TUMOUR EXTRACELLULAR MATRIX
INTRODUCTION Nanoparticle drug delivery systems have the potential to improve current cancer treatments through encapsulating cytotoxic agents and delivering them to specific sites in the body. One such class of particle, liposomes, has already found some commercial success [1]. Liposomes are vesicles composed of a lipid bi-layer surrounding an aqueous solution. Poly(ethylene) glycol (PEG) surface coating is commonly used to improve the hydrophilicity of liposomes, thereby increasing their stability in aqueous solutions. Furthermore, PEG limits the binding of blood antigens, which minimizes opsonisation and phagocytosis, extending circulation time in the blood stream. When applied to the surface of liposomes at lower molecular weights and surface densities, PEG adopts a “mushroom” conformation, in which adjacent chains of PEG do not interact laterally, therefore portions of the bi-layer remain exposed [2]. However, at higher molecular weights and surface densities, the “brush” conformation is adopted; where lateral interactions occur between neighbouring PEG strands and provide complete coverage of the lipid bi-layer [2]. This study will investigate the effect of varying PEG molecular weight and surface density on liposome transport through tumour extracellular matrix. METHODS Seven different formulations of liposomes were synthesized using a modification of the lipid extrusion method described in [1]. Molecular weight and surface density values were chosen to include both PEG conformations. The Type I collagen hydrogel was prepared with a collagen concentration of 2.5mg/mL. Confocal Microscopy was used to track the liposome transport into the gels via the bilayer incorporated Rhodamine dye. While simple collagen hydrogels may not capture all of the complexity of native tumour ECM, they allow for more carefully controlled conditions than in vivo models. Images were taken every 30 minutes until the 900 minute mark. RESULTS As shown in Figure 1, the liposomes with a lower PEG loading (DOPC, 5, 10% PEG 1000, 5, 10% PEG 2000), all accumulated at the interface of the hydrogel, and had identical diffusion coefficients. The 5% and 10% PEG 5000 however, accumulated significantly less and therefore had a much greater diffusion coefficient.DISCUSSION AND CONCLUSIONS The liposomes with low PEG surface density, and DOPC control liposomes shown in Figure 1, are all within the “mushroom” conformation of PEG [2] and therefore would all have exposed bilayer which is not shielded by the PEG strands. The formulations that penetrated deeply were notably only higher PEG surface densities (5 and 10% PEG 5000) which literature suggests would have been in the “brush” conformation [2]. This suggests that the high PEG surface densities sterically shielded the liposomes, and reduced the electrostatic interactions between the hydrogels and the liposomes, allowing increased diffusion
Human hippocampal CA3 damage disrupts both recent and remote episodic memories
Neocortical-hippocampal interactions support new episodic (event) memories, but there is conflicting evidence about the dependence of remote episodic memories on the hippocampus. In line with systems consolidation and computational theories of episodic memory, evidence from model organisms suggests that the cornu ammonis 3 (CA3) hippocampal subfield supports recent, but not remote, episodic retrieval. In this study, we demonstrated that recent and remote memories were susceptible to a loss of episodic detail in human participants with focal bilateral damage to CA3. Graph theoretic analyses of 7.0-Tesla resting-state fMRI data revealed that CA3 damage disrupted functional integration across the medial temporal lobe (MTL) subsystem of the default network. The loss of functional integration in MTL subsystem regions was predictive of autobiographical episodic retrieval performance. We conclude that human CA3 is necessary for the retrieval of episodic memories long after their initial acquisition and functional integration of the default network is important for autobiographical episodic memory performance
Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis
Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 x 0.39 x 1.0 mm³) 7.0T magnetic resonance imaging [n = 18 patients, 17 patients (94%) positive for LGI1 antibody and one patient negative for LGI1/CASPR2 but positive for VGKC-complex antibodies, mean age: 64.0 ± 2.55 years, median 4 years post-limbic encephalitis onset; n = 18 controls]. First, hippocampal subfield quantitative morphometry indicated significant volume loss confined to bilateral CA3 [F(1,34) = 16.87, P 3 months from symptom onset) were associated with CA3 atrophy. Third, whole-brain voxel-by-voxel morphometry revealed no significant grey matter loss. Fourth, CA3 subfield atrophy was associated with severe episodic but not semantic amnesia for postmorbid autobiographical events that was predicted by variability in CA3 volume. The results raise important questions about the links with histopathology, the impact of the observed focal atrophy on other CA3-mediated reconstructive and episodic mechanisms, and the role of potential antibody-mediated pathogenicity as part of the pathophysiology cascade in humans
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial.
BACKGROUND: Remote ischaemic conditioning with transient ischaemia and reperfusion applied to the arm has been shown to reduce myocardial infarct size in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). We investigated whether remote ischaemic conditioning could reduce the incidence of cardiac death and hospitalisation for heart failure at 12 months. METHODS: We did an international investigator-initiated, prospective, single-blind, randomised controlled trial (CONDI-2/ERIC-PPCI) at 33 centres across the UK, Denmark, Spain, and Serbia. Patients (age >18 years) with suspected STEMI and who were eligible for PPCI were randomly allocated (1:1, stratified by centre with a permuted block method) to receive standard treatment (including a sham simulated remote ischaemic conditioning intervention at UK sites only) or remote ischaemic conditioning treatment (intermittent ischaemia and reperfusion applied to the arm through four cycles of 5-min inflation and 5-min deflation of an automated cuff device) before PPCI. Investigators responsible for data collection and outcome assessment were masked to treatment allocation. The primary combined endpoint was cardiac death or hospitalisation for heart failure at 12 months in the intention-to-treat population. This trial is registered with ClinicalTrials.gov (NCT02342522) and is completed. FINDINGS: Between Nov 6, 2013, and March 31, 2018, 5401 patients were randomly allocated to either the control group (n=2701) or the remote ischaemic conditioning group (n=2700). After exclusion of patients upon hospital arrival or loss to follow-up, 2569 patients in the control group and 2546 in the intervention group were included in the intention-to-treat analysis. At 12 months post-PPCI, the Kaplan-Meier-estimated frequencies of cardiac death or hospitalisation for heart failure (the primary endpoint) were 220 (8·6%) patients in the control group and 239 (9·4%) in the remote ischaemic conditioning group (hazard ratio 1·10 [95% CI 0·91-1·32], p=0·32 for intervention versus control). No important unexpected adverse events or side effects of remote ischaemic conditioning were observed. INTERPRETATION: Remote ischaemic conditioning does not improve clinical outcomes (cardiac death or hospitalisation for heart failure) at 12 months in patients with STEMI undergoing PPCI. FUNDING: British Heart Foundation, University College London Hospitals/University College London Biomedical Research Centre, Danish Innovation Foundation, Novo Nordisk Foundation, TrygFonden
Thigh-length compression stockings and DVT after stroke
Controversy exists as to whether neoadjuvant chemotherapy improves survival in patients with invasive bladder cancer, despite randomised controlled trials of more than 3000 patients. We undertook a systematic review and meta-analysis to assess the effect of such treatment on survival in patients with this disease
Mapping the human genetic architecture of COVID-19
The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3–7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease
Emotional Ambivalence across Times and Spaces: Mapping Petrarch’s Intersecting Worlds
Petrarch stands at the top of Mount Ventoux and proclaims his longing to return home. His soul turns toward Italy. Yet Petrarch has no “home” as such, and Italy does not exist except as a post-imperial territorial designation. There certainly is no Italian nation. How can we understand these paradoxes? How does Petrarch’s passion relate to the question of nation formation? Through an exploration of Petrarch’s emotional responses to Italy, and by tracking his variable senses of space and time, this essay explores the tensions expressed by a deracinated intellectual caught between two different but contemporaneous ontological formations: the traditional and the modern. Here, the concept of “the traditional” is not treated as being the same as “the pre-modern.” Rather the essay works with a post-binary method of ontological valences or orientations. The colliding valence s of Petrarch’s evocations are used to illustrate the ways we can open up alternative lines of inquiry into a crucial period in the life of Italy. The essay seeks an alternative to the mainstream tendency to either to make contentious overstatements or to slide into overcautious interpretative ambiguity