14 research outputs found
Reproducing crowd turbulence with Verlet integration and agent modeling
High density crowds are risk situations that already had turned some events into disasters. There are particular emerging events in these crowds that had led to dangerous situations. One important phenomenon is named “crowd turbulence”. It is produced by a propagation of forces among the mass and has already been the cause of several tragedies. We present a new approach to its representation and understanding by a hybrid model composed by two parts: physical interaction among the agents, and psychological factors that produce voluntary interactions. The focus of the present work is contributing with a model able to reproduce such events in a computationally efficient way on SIMD architecture
Reproducibility, accuracy and performance of the Feltor code and library on parallel computer architectures
Feltor is a modular and free scientific software package. It allows
developing platform independent code that runs on a variety of parallel
computer architectures ranging from laptop CPUs to multi-GPU distributed memory
systems. Feltor consists of both a numerical library and a collection of
application codes built on top of the library. Its main target are two- and
three-dimensional drift- and gyro-fluid simulations with discontinuous Galerkin
methods as the main numerical discretization technique. We observe that
numerical simulations of a recently developed gyro-fluid model produce
non-deterministic results in parallel computations. First, we show how we
restore accuracy and bitwise reproducibility algorithmically and
programmatically. In particular, we adopt an implementation of the exactly
rounded dot product based on long accumulators, which avoids accuracy losses
especially in parallel applications. However, reproducibility and accuracy
alone fail to indicate correct simulation behaviour. In fact, in the physical
model slightly different initial conditions lead to vastly different end
states. This behaviour translates to its numerical representation. Pointwise
convergence, even in principle, becomes impossible for long simulation times.
In a second part, we explore important performance tuning considerations. We
identify latency and memory bandwidth as the main performance indicators of our
routines. Based on these, we propose a parallel performance model that predicts
the execution time of algorithms implemented in Feltor and test our model on a
selection of parallel hardware architectures. We are able to predict the
execution time with a relative error of less than 25% for problem sizes between
0.1 and 1000 MB. Finally, we find that the product of latency and bandwidth
gives a minimum array size per compute node to achieve a scaling efficiency
above 50% (both strong and weak)
Simulations of combined ICRF and NBI heating for high fusion performance in JET
We report on simulations aimed at optimizing external heating using neutral beam injection (NBI) and radiofrequency waves in the ion cyclotron range of frequencies (ICRF) for high fusion yield in the JET tokamak. In this paper, D and DT plasmas are analyzed taking into account the NBI+RF synergy focusing on two different minority ICRF schemes,
He and H, respectively. Our results show that by increasing external heating power to the maximum power available, the fusion neutron rate can be enhanced in D plasma by a factor of 2-3 with respect to our reference record D discharge. Regarding the DT plasma we present the external heating performance under the variation of key plasma parameters. We also study the impact of the effects of ICRH to the fusion yield and show that the ICRH power results in an enhanced fusion yield in the whole parameter space studied.This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme
2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Dani Gallart would like to express his gratitude to “La Caixa” for support of his PhD studies.Postprint (author's final draft
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
TRY plant trait database - enhanced coverage and open access
Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
TRY plant trait database - enhanced coverage and open access
This article has 730 authors, of which I have only listed the lead author and myself as a representative of University of HelsinkiPlant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.Peer reviewe
Reproducing crowd turbulence with Verlet integration and agent modeling
High density crowds are risk situations that already had turned some events into disasters. There are particular emerging events in these crowds that had led to dangerous situations. One important phenomenon is named “crowd turbulence”. It is produced by a propagation of forces among the mass and has already been the cause of several tragedies. We present a new approach to its representation and understanding by a hybrid model composed by two parts: physical interaction among the agents, and psychological factors that produce voluntary interactions. The focus of the present work is contributing with a model able to reproduce such events in a computationally efficient way on SIMD architecture
Crowd Evacuations SaaS: An ABM Approach
AbstractCrowd evacuations involve thousands of persons in closed spaces. Having knowledge about where the problematic exits will be or where the disaster may occur can be crucial in emergency planning. We implemented a simulator using Agent Based Modelling able to model the behaviour of people in evacuation situations and a workflow able to run it in the cloud. The input is just a PNG image and the output are statistical results of the simulation executed on the cloud. This allows to provide the user with a system abstraction and only a map of the scenario is needed. Many events are held in main city squares, so to test our system we chose Siena and we fit about 28,000 individuals in the centre of the square. The software has special computational requirements because the results need to be statistically reliable. Because these needs we use distributed computing. In this paper we show how the simulator scales efficiently on the cloud
Strip Partitioning for Ant Colony Parallel and Distributed Discrete-event Simulation
AbstractData partitioning is one of the main problems in parallel and distributed simulation. Distribution of data over the architecture directly influences the efficiency of the simulation. The partitioning strategy becomes a complex problem because it depends on several factors. In an Individual-oriented Model, for example, the partitioning is related to interactions between the individual and the environment. Therefore, parallel and distributed simulation should dynamically enable the interchange of the partitioning strategy in order to choose the most appropriate partitioning strategy for a specific context. In this paper, we propose a strip partitioning strategy to a spatially dependent problem in Individual-oriented Model applications. This strategy avoids sharing resources, and, as a result, it decreases communication volume among the processes. In addition, we develop an objective function that calculates the best partitioning for a specific configuration and gives the computing cost of each partition, allowing for a computing balance through a mapping policy. The results obtained are supported by statistical analysis and experimentation with an Ant Colony application. As a main contribution, we developed a solution where the partitioning strategy can be chosen dynamically and always returns the lowest total execution time
Validations of the radiation transport module NEUTRO: A deterministic solver for the neutron transport equation
We present significant improvements and validations of a deterministic neutron transport code (NEUTRO) dedicated to solving the Boltzmann Transport Equation. The code is integrated as a module in the Alya software package developed by the Barcelona Supercomputing Center which uses the Discrete Ordinates Method on angular coordinates, multi-group for energy discretization and FEM on unstructured meshes to treat special complex domains. The anisotropy of the scattering medium is introduced into the scattering kernel using real base expressions for spherical harmonics. In order to build the total cross-section and the respective group matrix for the elastic cross-section, we use the NJOY code. We test the solver using different geometries, orders of integration for the angular discretization and number of energy groups. Finally, we compare our results against benchmarks obtained from an NEA database that reported measurements of leakage spectra of several materials.Fil: Soba, Alejandro. Comisión Nacional de Energía Atómica; Argentina. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cazado, Mauricio Exequiel. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Houzeaux, Guillaume. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; EspañaFil: Gutierrez Milla, Albert. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; EspañaFil: Mantsinen, Mervi J.. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; España. Institució Catalana de Recerca i Estudis Avancats; EspañaFil: Saez, Xavier. Barcelona Supercomputing Center - Centro Nacional de Supercomputacion; Españ