518 research outputs found

    Detection of eight different tospovirus species by a monoclonal antibody against the common epitope of NSs protein

    Get PDF
    Rabbit antisera against the nucleocapsid protein (NP) have been commonly used for detection of tospoviruses and classification into serogroups or serotypes. Mouse monoclonal antibodies (MAbs) with high specificity to the NPs have also been widely used to identify tospovirus species. Recently, a serogroup-specific MAb against the NSs protein of Watermelon silver mottle virus (WSMoV) was produced by our laboratory to react with five members of WSMoV serogroup, i.e., WSMoV, Capsicum chlorosis virus (CaCV), Calla lily chlorotic spot virus (CCSV), Peanut bud necrosis virus (PBNV) and Watermelon bud necrosis virus (WBNV). The epitope recognized by the NSs MAb was determined and the comparison with the reported sequences of tospoviral NSs proteins revealed that the epitope is highly conserved at the N-terminal region of NSs proteins among members of WSMoV and Iris yellow spot virus (IYSV) serogroups, and Melon yellow spot virus (MYSV) serotype. When the NSs MAb was further used to react with the crude antigens of MYSV serotype, IYSV and Tomato yellow ring virus (TYRV) of IYSV serogroup, strong serological reactions, both in ELISA and western blotting, were observed. Thus, our results indicated that the NSs MAb is a useful and convenient tool for detection of the eight tospovirus species. It is also suggested that these eight Asian-type tospoviruses, i.e., WSMoV, CaCV, CCSV, PBNV, WBNV, MYSV, IYSV and TYRV, may share a common evolutionary ancesto

    Chitosan microfiber fabrication using microfluidic chips of different sheath channel angles and its application on cell culture

    Get PDF
    AbstractIn this study, we successfully produced the chitosan microfibers using the proposed various angles of microfluidic chip, which was also been simulated. By controlling the core and sheath flow rates, we were able to generate laminar flow of different diameters from 15 μm to 40 μm. And the diameter of chitosan microfiber was measured from 20 μm to 50 μm. The microchannel of angle 30° could produce chitosan laminar flow of a smaller diameter than the angle 60° and angle 45° at the fixed flow rates. Finally, the chitosan microfiber was chosen as scaffold and the schwann cell and fibroblast cell with chitosan microfibers were used for cell culture to test effect in tissue engineering application

    Adenoviral expression of a bispecific VHH-based neutralizing agent that targets protective antigen provides prophylactic protection from anthrax in mice

    Get PDF
    Bacillus anthracis, the causative agent of anthrax, secretes three polypeptides, which form the bipartite lethal and edema toxins (LT and ET, respectively). The common component in these toxins, protective antigen (PA), is responsible for binding to cellular receptors and translocating the lethal factor (LF) and edema factor (EF) enzymatic moieties to the cytosol. Antibodies against PA protect against anthrax. We previously isolated toxin-neutralizing variable domains of camelid heavy-chain-only antibodies (VHHs) and demonstrated their in vivo efficacy. In this work, gene therapy with an adenoviral (Ad) vector (Ad/VNA2-PA) (VNA, VHH-based neutralizing agents) promoting the expression of a bispecific VHH-based neutralizing agent (VNA2-PA), consisting of two linked VHHs targeting different PA-neutralizing epitopes, was tested in two inbred mouse strains, BALB/cJ and C57BL/6J, and found to protect mice against anthrax toxin challenge and anthrax spore infection. Two weeks after a single treatment with Ad/VNA2-PA, serum VNA2-PA levels remained above 1 μg/ml, with some as high as 10 mg/ml. The levels were 10- to 100-fold higher and persisted longer in C57BL/6J than in BALB/cJ mice. Mice were challenged with a lethal dose of LT or spores at various times after Ad/VNA2-PA administration. The majority of BALB/cJ mice having serum VNA2-PA levels of >0.1 μg/ml survived LT challenge, and 9 of 10 C57BL/6J mice with serum levels of >1 μg/ml survived spore challenge. Our findings demonstrate the potential for genetic delivery of VNAs as an effective method for providing prophylactic protection from anthrax. We also extend prior findings of mouse strain-based differences in transgene expression and persistence by adenoviral vectors

    C-reactive protein, sodium azide, and endothelial connexin43 gap junctions

    Get PDF
    We investigated the effect of C-reactive protein (CRP) and sodium azide (NaN(3)) on endothelial Cx43 gap junctions. Human aortic endothelial cells (HAEC) were treated with (a) detoxified CRP, (b) detoxified dialyzed CRP, (c) detoxified dialyzed CRP plus NaN(3), (d) NaN(3), or (e) dialyzed NaN(3). The concentration of CRP in all preparations was fixed to 25 mu g/ml and that of NaN(3) in the preparations of (c) to (e) was equivalent to that contained in the 25 mu g/ml CRP purchased commercially. The results showed that both the expression of Cx43 protein and gap junctional communication function post-48-h incubation were reduced and inhibited by the detoxified CRP, NaN(3), or detoxified dialyzed CRP plus NaN(3), but not by the detoxified dialyzed CRP or dialyzed NaN(3). Reverse transcription-polymerase chain reaction analysis of cells treated for 72 h also showed a pattern of transcriptional regulation essentially the same as that for the proteins. We concluded that CRP does not have a significant effect on Cx43 gap junctions of HAEC, but NaN(3) inhibited the viability of cells and downregulate their junctions

    Measurement of Cosmic-ray Muon-induced Spallation Neutrons in the Aberdeen Tunnel Underground Laboratory

    Get PDF
    AbstractMuon-induced neutrons are one of the major backgrounds to various underground experiments, such as dark matter searches, low-energy neutrino oscillation experiments and neutrino-less double beta-decay experiments. Previous experiments on the underground production rate of muon-induced neutrons were mostly carried out either at shallow sites or at very deep sites. The Aberdeen Tunnel experiment aims to measure the neutron production rate at a moderate depth of 611 meters water equivalent. Our apparatus comprises of six layers of plastic-scintillator hodoscopes for tracking the incident cosmic-ray muons, and 760 L of gadolinium-doped liquid-scintillator for both neutron production and detection targets. In this paper, we describe the design and the performance of the apparatus. The preliminary result on the measurement of neutron production rate is also presented

    Revisiting the transit timing and atmosphere characterization of the Neptune-mass planet HAT-P-26 b

    Get PDF
    We present a transit-timing variation (TTV) and planetary atmosphere analysis of the Neptune-mass planet HAT-P-26 b. We present a new set of 13 transit light curves from optical ground-based observations and combine them with light curves from the Wide Field Camera 3 on the Hubble Space Telescope, the Transiting Exoplanet Survey Satellite, and previously published ground-based data. We refine the planetary parameters of HAT-P-26 b and undertake a TTV analysis using 33 transits obtained over seven years. The TTV analysis shows an amplitude signal of 1.98 ± 0.05 minutes, which could result from the presence of an additional ∼0.02 MJup planet at a 1:2 mean-motion resonance orbit. Using a combination of transit depths spanning optical to near-infrared wavelengths, we find that the atmosphere of HAT-P-26 b contains 2.41.6+2.9{2.4}_{-1.6}^{+2.9}% H2O with a derived temperature of 59050+60{590}_{-50}^{+60} K

    Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya

    Get PDF
    Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization

    Global Search for New Physics with 2.0/fb at CDF

    Get PDF
    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (Vista) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps" that could indicate resonant production of new particles; and the Sleuth procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0/fb of ppbar collisions at sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D Rapid Communication

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let
    corecore