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Abstract

Muon-induced neutrons are one of the major backgrounds to various underground experiments, such as dark matter
searches, low-energy neutrino oscillation experiments and neutrino-less double beta-decay experiments. Previous
experiments on the underground production rate of muon-induced neutrons were mostly carried out either at shallow
sites or at very deep sites. The Aberdeen Tunnel experiment aims to measure the neutron production rate at a moderate
depth of 611 meters water equivalent. Our apparatus comprises of six layers of plastic-scintillator hodoscopes for
tracking the incident cosmic-ray muons, and 760 L of gadolinium-doped liquid-scintillator for both neutron production
and detection targets. In this paper, we describe the design and the performance of the apparatus. The preliminary
result on the measurement of neutron production rate is also presented.
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1. Introduction

High-energy muons can penetrate into underground,
and cause a source of background to some sensitive
experiments, such as dark matter searches, low-energy
neutrino oscillation experiments and neutrino-less dou-
ble beta-decay experiments. Muons can be easily iden-
tified and vetoed. However, high-energy muons can in-
duce spallation neutrons and radioisotopes. These neu-
trons can travel a long distance into the detector, and are
difficult to be tagged. Therefore, understanding muon-
induced neutrons is important to sensitive underground
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experiments. The goal of the Aberdeen Tunnel exper-
iment was to determine the production rate of muon-
induced neutrons in an organic liquid scintillator.

The Aberdeen Tunnel laboratory is located inside
cross-tunnel No. 5 of the Aberdeen Tunnel, Hong Kong.
The laboratory is 22 m above sea level, and has an
overburden of approximately 235 m of rocks, which
is equivalent to 611 meters water equivalent (m.w.e.).
The rocks surrounding the laboratory are mostly gran-
ite. MUSIC [1] simulations predicted the average muon
energy inside the laboratory to be 120 GeV, and the inte-
grated muon flux to be approximately 1 × 10−5cm−2s−1.
The following sections briefly describe the experimen-
tal setup and its performance. A detailed description is
given in Ref. [2].
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2. Apparatus

The detection of muon-induced neutrons was done
using a muon tracker (MT) and a neutron detector (ND).
The MT gives the directions and positions of the incom-
ing cosmic-ray muons. It consists of 60 plastic scintil-
lator hodoscopes arranged in three layers. Each layer
is made up of two planes of hodoscopes orthogonal to
each other for determining the coordinates of a muon.
The top and the middle layers are put above the neutron
detector, and the bottom layer rests on the floor. The
three layers of hodoscopes are aligned vertically.

The ND is a calorimeter. It employs a two-zone de-
sign. The outer zone contains 1900 L (1.63 ton) of
mineral oil (MO) to attenuate gamma radiations from
outside of the target volume and to suppress ambient
slow-neutron backgrounds. The inner zone contains 760
L (0.65 ton) of 0.06% gadolinium-doped linear-alkyl-
benzene-based liquid scintillator (Gd-LS), which is the
target for neutron production and detection. When the
gadolinium captures a neutron, it produces a gamma
cascade with a total energy of about 8 MeV. Scin-
tillation photons created by the gamma-rays are de-
tected with 16 Hamamatsu R1408 20-cm photomulti-
plier tubes (PMT). There are three calibration ports on
the top of the ND for deploying calibration sources.

The data acquisition (DAQ) system consists of home-
made front-end electronics (FEE) for the MT and
CAEN remote-controllable VME electronics modules.
The PMT signals from the MT are digitized by the FEE.
A coincidence and pattern register module handles the
signals from every MT FEE according to a multiplic-
ity trigger condition. The output of the MT is a “hit
pattern”, showing which hodoscopes are hit in coin-
cidence. For the ND, each PMT signal is duplicated
into three copies by a linear fan-in/fan-out. One copy
goes directly into a charge-to-digital converter (QDC)
for charge measurement. The other two copies are used
to form a multiplicity (N-HIT) trigger and an energy-
sum (ESUM) trigger respectively. The logic signals of
the N-HIT trigger, the ESUM trigger, and a LED trigger
from the ND calibration device are passed to a Mas-
ter Trigger Board (MTB) for the final trigger decision.
The MTB records the trigger time and the correspond-
ing event type (MT or ND) at 10 ns time resolution.
Events can be correlated in off-line analyses to search
for muon-induced neutrons.

3. Detector performance

The MT was self-calibrated using the cosmic-ray
muons passing through it. The efficiency along each

Efficiency Uncertainty
Muon track length 1%
Energy cut 52% 2%
Time cut 87% 1%
Gd capture ratio 80% 1%
Spilling (preliminary) 90% 15%
Livetime (preliminary) 95% 1%
Overall (preliminary) 30% 5%

Table 1: Summary of efficiencies and systematic uncertainties in the
measurement of muon-induced neutrons.

hodoscope was uniform, with an average efficiency of
above 95% for most of the hodoscopes. The ND was
calibrated with gamma sources 137Cs (0.66 MeV) and
60Co (1.17, 1.33 MeV) as well as a neutron source
241Am-Be. The neutron detection efficiency was broken
down into different contributing components as shown
in Table 1. The spilling fraction accounts for the gain or
loss in neutron candidates that pass through the bound-
ary of the target volume. Its value depends on the choice
of neutron kinematic models which requires some fur-
ther studies. The presented livetime corresponds to
the case of single neutron production. It is required
to extend the livetime calculation to the cases of dif-
ferent neutron multiplicity. The values for energy cut,
time cut, Gd capture ratio and spilling were derived
from GEANT4-based [3] simulations. The simulations
had been cross-checked with calibration run data to de-
termine the uncertainties. A comparison between the
measured and the simulated neutron capture spectra is
shown in Fig. 1.

4. Result and conclusions

Muon-induced neutron candidates were selected us-
ing the delayed-coincidence method. A prompt muon
signal was selected if the MT bottom layer was trig-
gered and both the top and middle layers had a single
hit point respectively. A delayed neutron capture sig-
nal was selected if the reconstructed energy was greater
than 4.6 MeV and the event occurred within a time win-
dow of (10 - 210) μs after the preceding prompt signal.
Background contribution was estimated within a time
window of (800 - 1600) μs after the preceding prompt
signal. The net number of muon-induced neutron can-
didates, divided by the neutron detection efficiency, the
total muon track length and the target mass density, gave
the total neutron yield Nn = (9.5±0.8(stat.)±1.6(syst.))×
10−5 n / (μ g cm−2). The average energy of the muons
that could be selected as the prompt signals was calcu-
lated to be 92 GeV. Our preliminary result was com-
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Figure 1: Comparison between the measured (circles) and the simulated (triangles) neutron capture spectra due to the 241Am-Be.
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Figure 2: Total neutron production yield as a function of muon energy.
The circle represents our preliminary result. The lines show the fitting
result of simulation studies [4, 5]. The triangles, from left to right, are
other experimental data from respectively, the Stanford Underground
Facility [6], a gypsum mine [7], the Palo Verde experiment [8], a salt
mine [7], the Artemovsk Scientific Station [9], the KamLAND experi-
ment [10], the LVD in Gran Sasso [11], the Borexino experiment [12],
and the LSD in Mont Blanc [13].

pared to previous simulation studies and measurement
results in Fig. 2. It was 20% lower than the simulation
predictions. Further studies on the neutron spilling ef-
fect and the detection livetime for different neutron mul-
tiplicity are required to confirm the observation.
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