65 research outputs found

    Quantification of thermal ring flexibilities of aromatic and heteroaromatic compounds

    Get PDF
    The consequences of thermal fluctuations occurring at room temperatures on the aromatic character of a broad group of compounds were analyzed in three distinct ways. First of all, the ring deformations were modeled along normal coordinates coming from quantum thermo-chemistry computations. The amplitudes of vibrations were estimated according to absorbed energies at room temperature. Alternatively, in-plane and out-of-plane ring deformations were modeled via scanning procedure with partial relaxation of the molecular geometry. The influence of ring deformations on π–electron delocalization was expressed in terms of HOMA values. Besides, the ring deformability was defined as the averaged change of bond angles or dihedral angles constituting the ring that was associated with 1.5 kcal mol-1 increase of the system energy. The molecules structures adopted during vibrations at room temperature can lead to significant heterogeneity of structural index of aromaticity. The broad span of HOMA values was obtained for analyzed five- or six-membered aromatic and heteroaromatic rings. However, the averaged values obtained for such fluctuations almost perfectly match HOMA values of molecule in the ground state. It has been demonstrated that the ring deformability imposed by bond angle changes is much smaller than for dihedral angles with the same rise of system energy. Interestingly in the case of out-of-plane vibrations modeled by scanning procedure there is observed linear correlation between ring deformability and HOMA values. Proposed method for inclusion of thermal vibrations in the framework of π–electron delocalization provides natural shift of the way of thinking about aromaticity from a static quantity to a dynamic and heterogeneous one due to inclusion of a more realistic object of analysis – thermally deformed structures. From this perspective the thermal fluctuations are supposed to be non-negligible contributions to aromaticity phenomenon

    Precise measurement of the W-boson mass with the CDF II detector

    Get PDF
    We have measured the W-boson mass MW using data corresponding to 2.2/fb of integrated luminosity collected in proton-antiproton collisions at 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470126 W->enu candidates and 624708 W->munu candidates yield the measurement MW = 80387 +- 12 (stat) +- 15 (syst) = 80387 +- 19 MeV. This is the most precise measurement of the W-boson mass to date and significantly exceeds the precision of all previous measurements combined

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Measurement of the Top Pair Production Cross Section in the Dilepton Decay Channel in ppbar Collisions at sqrt s = 1.96 TeV

    Get PDF
    Submitted to Phys. Rev. DA measurement of the \ttbar production cross section in \ppbar collisions at s\sqrt{{\rm s}} = 1.96 TeV using events with two leptons, missing transverse energy, and jets is reported. The data were collected with the CDF II Detector. The result in a data sample corresponding to an integrated luminosity 2.8 fb1^{-1} is: \sigma_{\ttbar} = 6.27 ±\pm 0.73(stat) ±\pm 0.63(syst) ±\pm 0.39(lum) pb. for an assumed top mass of 175 GeV/c2c^{2}.A measurement of the tt̅ production cross section in pp̅ collisions at √s=1.96  TeV using events with two leptons, missing transverse energy, and jets is reported. The data were collected with the CDF II detector. The result in a data sample corresponding to an integrated luminosity 2.8  fb-1 is σtt̅ =6.27±0.73(stat)±0.63(syst)±0.39(lum)  pb. for an assumed top mass of 175  GeV/c2.Peer reviewe

    Suppression in Pb-Pb Collisions at the LHC.

    Get PDF
    The production of the ψ(2S) charmonium state was measured with ALICE in Pb-Pb collisions at sqrt[s_{NN}]=5.02  TeV, in the dimuon decay channel. A significant signal was observed for the first time at LHC energies down to zero transverse momentum, at forward rapidity (2.5<y<4). The measurement of the ratio of the inclusive production cross sections of the ψ(2S) and J/ψ resonances is reported as a function of the centrality of the collisions and of transverse momentum, in the region p_{T}<12  GeV/c. The results are compared with the corresponding measurements in pp collisions, by forming the double ratio [σ^{ψ(2S)}/σ^{J/ψ}]_{Pb-Pb}/[σ^{ψ(2S)}/σ^{J/ψ}]_{pp}. It is found that in Pb-Pb collisions the ψ(2S) is suppressed by a factor of ∼2 with respect to the J/ψ. The ψ(2S) nuclear modification factor R_{AA} was also obtained as a function of both centrality and p_{T}. The results show that the ψ(2S) resonance yield is strongly suppressed in Pb-Pb collisions, by a factor of up to ∼3 with respect to pp. Comparisons of cross section ratios with previous Super Proton Synchrotron findings by the NA50 experiment and of R_{AA} with higher-p_{T} results at LHC energy are also reported. These results and the corresponding comparisons with calculations of transport and statistical models address questions on the presence and properties of charmonium states in the quark-gluon plasma formed in nuclear collisions at the LHC

    TAAR1 Modulates Cortical Glutamate NMDA Receptor Function

    Get PDF
    Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions

    Impact of Endocrine Disorders on Vasculature

    No full text
    Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) regulate essential vascular functions, including contractility, inflammation, and platelet activity. Endothelial dysfunction represents an early marker of impaired vascular homeostasis as well as a strong predictor of atherosclerosis and future cardiovascular (CV) events. Many hormones interact with ECs and VSMCs, thus playing a key role in vascular homeostasis. On this basis, endocrine disorders may be considered as a paradigm of endocrine control on vascular health. On the one hand, they contribute to understanding the pathophysiological mechanisms underlying vascular dysfunction. Furthermore, the tight control of endocrine pathways on vascular function emphasizes their pleiotropic activity and the interplay between different hormonal axes. Here, we summarize the current knowledge linking endocrine system and vascular health. Direct effects of insulin, thyroid hormones, mineralo- and glucocorticoids, growth hormone/insulinlike growth factor, sexual hormones, and calcium/phosphorus regulating hormones will be analyzed, also considering the complex interplay between those different pathways. Both molecular mechanisms and clinical evidence will be discussed also describing the potential role of different hormones as potential biomarkers of atherosclerosis and risk of adverse cardiovascular events
    corecore