10 research outputs found

    Planck 2015 results I. Overview of products and scientific results

    Get PDF
    The European Space Agency's Planck satellite, which is dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA and the Planck Collaboration released the second set of cosmology products based on data from the entire Planck mission, including both temperature and polarization, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the main characteristics of the data and the data products in the release, as well as the associated cosmological and astrophysical science results and papers. The data products include maps of the cosmic microwave background (CMB), the thermal Sunyaev-Zeldovich effect, diffuse foregrounds in temperature and polarization, catalogues of compact Galactic and extragalactic sources (including separate catalogues of Sunyaev-Zeldovich clusters and Galactic cold clumps), and extensive simulations of signals and noise used in assessing uncertainties and the performance of the analysis methods. The likelihood code used to assess cosmological models against the Planck data is described, along with a CMB lensing likelihood. Scientific results include cosmological parameters derived from CMB power spectra, gravitational lensing, and cluster counts, as well as constraints on inflation, non-Gaussianity, primordial magnetic fields, dark energy, and modified gravity, and new results on low-frequency Galactic foregrounds

    Candidate Clusters of Galaxies at z > 1.3 Identified in the Spitzer South Pole Telescope Deep Field Survey

    No full text
    International audienceWe present 279 galaxy cluster candidates at z > 1.3 selected from the 94 deg2 Spitzer South Pole Telescope Deep Field (SSDF) survey. We use a simple algorithm to select candidate high-redshift clusters of galaxies based on Spitzer/IRAC mid-infrared data combined with shallow all-sky optical data. We identify distant cluster candidates adopting an overdensity threshold that results in a high purity (80%) cluster sample based on tests in the Spitzer Deep, Wide-Field Survey of the Boötes field. Our simple algorithm detects all three 1.4 <

    VLT and ACS Observations of RDCS J1252.9-2927: Dynamical Structure and Galaxy Populations in a Massive Cluster at z = 1.237

    No full text
    International audienceWe present results from an extensive spectroscopic survey, carried out with VLT FORS, and from an extensive multiwavelength imaging data set from the HST Advanced Camera for Surveys and ground-based facilities, of the cluster of galaxies RDCS J1252.9-2927. We have spectroscopically confirmed 38 cluster members in the redshift range 1.2

    VLT and ACS Observations of RDCS J1252.9-2927: Dynamical Structure and Galaxy Populations in a Massive Cluster at z = 1.237

    No full text
    International audienceWe present results from an extensive spectroscopic survey, carried out with VLT FORS, and from an extensive multiwavelength imaging data set from the HST Advanced Camera for Surveys and ground-based facilities, of the cluster of galaxies RDCS J1252.9-2927. We have spectroscopically confirmed 38 cluster members in the redshift range 1.2

    Galaxy populations in massive galaxy clusters to z = 1.1 : colour distribution, concentration, halo occupation number and red sequence fraction

    Get PDF
    We study the galaxy populations in 74 Sunyaev–Zeldovich effect selected clusters from the South Pole Telescope survey, which have been imaged in the science verification phase of the Dark Energy Survey. The sample extends up to z ∼ 1.1 with 4 × 1014M ≤ M200 ≤ 3 × 1015M . Using the band containing the 4000 Å break and its redward neighbour, we study the colour–magnitude distributions of cluster galaxies to ∼m∗ + 2, finding that: (1)The intrinsic rest frame g − r colour width of the red sequence (RS) population is ∼0.03 out to z ∼ 0.85 with a preference for an increase to ∼0.07 at z = 1, and (2) the prominence of the RS declines beyond z ∼ 0.6. The spatial distribution of cluster galaxies is well described by the NFW profile out to 4R200 with a concentration of cg = 3.59+0.20 −0.18, 5.37+0.27 −0.24 and 1.38+0.21 −0.19 for the full, the RS and the blue non-RS populations, respectively, but with ∼40 per cent to 55 per cent cluster to cluster variation and no statistically significant redshift or mass trends. The number of galaxies within the virial region N200 exhibits a mass trend indicating that the number of galaxies per unit total mass is lower in the most massive clusters, and shows no significant redshift trend. The RS fraction within R200 is (68 ± 3) per cent at z = 0.46, varies from ∼55 per cent at z = 1 to ∼80 per cent at z = 0.1 and exhibits intrinsic variation among clusters of ∼14 per cent. We discuss a model that suggests that the observed redshift trend in RS fraction favours a transformation time-scale for infalling field galaxies to become RS galaxies of 2–3 Gyr

    The Victorian fin de siècle

    No full text

    Planck 2015 results. I. Overview of products and scientific results

    No full text

    Arbetslönerna inom biltrafiken under 1985, 3 kvartalet

    Get PDF
    Suomen virallinen tilasto (SVT

    Political process, social structure and musical performance in Europe since 1450

    No full text

    Cellular Antimicrobial Immunity

    No full text
    corecore