621 research outputs found

    Deliverable 3.6 zoning plan of case studies : evaluation of spatial management options for the case studies

    Get PDF
    Within MESMA, nine case studies (CS) represent discrete marine European spatial entities, at different spatial scales, where a spatial marine management framework is in place, under development or considered. These CS (described in more details below) are chosen in such a way (MESMA D. 3.1 ) that they encompass the complexity of accommodating the various user functions of the marine landscape in various regions of the European marine waters. While human activities at sea are competing for space, there is also growing awareness of the possible negative effects of these human activities on the marine ecosystem. As such, system specific management options are required, satisfying current and future sectoral needs, while safeguarding the marine ecosystem from further detoriation. This integrated management approach is embedded in the concept of ecosystem based management (EBM). The goal of marine EBM is to maintain marine ecosystems in a healthy, productive and resilient condition, making it possible that they sustain human use and provide the goods and services required by society (McLeod et al. 2005). Therefore EBM is an environmental mangagement approach that recognises the interactions within a marine ecosystem, including humans. Hence, EBM does not consider single issues, species or ecosystems good and services in isolation. Operationalisation of EBM can be done through place-based or spatial management approaches (Lackey 1998), such as marine spatial planning (MSP). MSP is a public process of analysing and allocating the spatial and temporal distribution of human activities aiming at achieving ecological, economic and social objectives. These objectives are usually formulated through political processes (Douvere et al. 2007, Douvere 2008). Within MESMA, a spatially managed area (SMA) is then defined as “a geographical area within which marine spatial planning initiatives exist in the real world”. Marine spatial planning initiatives refer to existing management measures actually in place within a defined area, or in any stage of a process of putting management in place, e.g. plans or recommendations for a particular area. Management can include management for marine protection (e.g. in MPAs), or management for sectoral objectives (e.g. building a wind farm to meet renewable energy objectives). Within MESMA, SMAs can have different spatial scales. A SMA can be a small, specific area that is managed/planned to be managed for one specific purpose, but it can also be a larger area within which lots of plans or ‘usage zones’ exist. This definition is different from the definition mentioned in the DoW (page 60). The original definition was adapted during a CS leader workshop (2-4 May 2012 in Gent, Belgium) and formally accepted by the MESMA ExB during the ExB meeting in Cork (29-30 May 2012). MSP should result in a marine spatial management plan that will produce the desired future trough explicit decisions about the location and timing of human activities. Ehler & Douvere (2009) consider this spatial management as a beginning toward the the implementation of desired goals and objectives. They describe the spatial management plan as a comprehensive, strategic document that provides the framework and direction for marine spatial management decisions. The plan should identify when, where and how goals and objectives will be met. Zoning (the development of zoning plans) is often an important management measure to implement spatial management plans. The purpose of a zoning plan (Ehler & Douvere 2009) is: To provide protection for biologically and ecologically important habitats, ecosystems, and ecological processes. To seperate conflicting human activities, or to combine compatible activities. To protect the natural values of the marine management area (in MESMA terminology: the SMA) while allowing reasonable human uses of the area. To allocate areas for reasonable human uses while minimising the effects of these human uses on each other, and nature. To preserve some areas of the SMA in their natural state undisturbed by humans except for scientific and educational purposes.peer-reviewe

    Maternal body mass index, gestational weight gain, and the risk of overweight and obesity across childhood : An individual participant data meta-analysis

    Get PDF
    Background Maternal obesity and excessive gestational weight gain may have persistent effects on offspring fat development. However, it remains unclear whether these effects differ by severity of obesity, and whether these effects are restricted to the extremes of maternal body mass index (BMI) and gestational weight gain. We aimed to assess the separate and combined associations of maternal BMI and gestational weight gain with the risk of overweight/obesity throughout childhood, and their population impact. Methods and findings We conducted an individual participant data meta-analysis of data from 162,129 mothers and their children from 37 pregnancy and birth cohort studies from Europe, North America, and Australia. We assessed the individual and combined associations of maternal pre-pregnancy BMI and gestational weight gain, both in clinical categories and across their full ranges, with the risks of overweight/obesity in early (2.0-5.0 years), mid (5.0-10.0 years) and late childhood (10.0-18.0 years), using multilevel binary logistic regression models with a random intercept at cohort level adjusted for maternal sociodemographic and lifestylerelated characteristics. We observed that higher maternal pre-pregnancy BMI and gestational weight gain both in clinical categories and across their full ranges were associated with higher risks of childhood overweight/obesity, with the strongest effects in late childhood (odds ratios [ORs] for overweight/obesity in early, mid, and late childhood, respectively: OR 1.66 [95% CI: 1.56, 1.78], OR 1.91 [95% CI: 1.85, 1.98], and OR 2.28 [95% CI: 2.08, 2.50] for maternal overweight; OR 2.43 [95% CI: 2.24, 2.64], OR 3.12 [95% CI: 2.98, 3.27], and OR 4.47 [95% CI: 3.99, 5.23] for maternal obesity; and OR 1.39 [95% CI: 1.30, 1.49], OR 1.55 [95% CI: 1.49, 1.60], and OR 1.72 [95% CI: 1.56, 1.91] for excessive gestational weight gain). The proportions of childhood overweight/obesity prevalence attributable to maternal overweight, maternal obesity, and excessive gestational weight gain ranged from 10.2% to 21.6%. Relative to the effect of maternal BMI, excessive gestational weight gain only slightly increased the risk of childhood overweight/obesity within each clinical BMI category (p-values for interactions of maternal BMI with gestational weight gain: p = 0.038, p <0.001, and p = 0.637 in early, mid, and late childhood, respectively). Limitations of this study include the self-report of maternal BMI and gestational weight gain for some of the cohorts, and the potential of residual confounding. Also, as this study only included participants from Europe, North America, and Australia, results need to be interpreted with caution with respect to other populations. Conclusions In this study, higher maternal pre-pregnancy BMI and gestational weight gain were associated with an increased risk of childhood overweight/obesity, with the strongest effects at later ages. The additional effect of gestational weight gain in women who are overweight or obese before pregnancy is small. Given the large population impact, future intervention trials aiming to reduce the prevalence of childhood overweight and obesity should focus on maternal weight status before pregnancy, in addition to weight gain during pregnancy.Peer reviewe

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Forward-central two-particle correlations in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 2GeV/c. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B. V.Peer reviewe

    Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at root(NN)-N-S=2.76 TeV

    Get PDF
    Peer reviewe

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.Peer reviewe
    corecore