21 research outputs found

    Enhancement of Local Buckling Behaviour of Steel Structures Retrofitted Through Bonding GFRP Plates

    Get PDF
    An effective technique involving the use of glass fiber reinforced polymer (GFRP) plates to enhance the local buckling behaviour of steel plates, beams, and moment resisting frames is presented in this Thesis. The enhancement in buckling capacity is achieved by bonding GFRP plates to the steel sections. These steel/GFRP joints have the advantages of ease of application, low cost, high strength-to-weight ratio, and resistance to corrosion. An interface element that simulates the behaviour of the adhesive bonding the steel and GFRP elements is developed and is implemented into an in-house developed finite element model to represent steel/GFRP joints. The model is based on a powerful nonlinear shell element that is capable of simulating both thin and thick-walled structures. The strength and stiffness of both the GFRP and the adhesive used in the model are based on values obtained from previously conducted tests. The enhancement in buckling capacity of retrofitted steel/GFRP plates is studied by bonding GFRP plates to steel plates having different aspect and slenderness ratios. The study also considers the effect of initial geometric imperfections on both the elastic and inelastic buckling capacities of retrofitted plates. Better improvement in load capacity is predicted for slender steel plates. The strength of the adhesive is shown to play an important role in defining the mode of failure and in determining the capacity of the retrofitted plates. The improvement in buckling behaviour of retrofitted steel/GFRP beams is then studied considering various thicknesses of GFRP plates. The conducted analysis covers a range of slenderness ratios of steel beams and assesses the effect of plastic modulus of steel, initial geometric imperfection, and residual stresses of the steel section on the load-deflection behaviour of steel beams. The lateral behaviour of moment resisting steel frames retrofitted with GFRP plates is studied to assess their capacity improvement in seismic regions. Nonlinear static pushover analyses are carried out for frames retrofitted at their beams’ flanges with different thickness of GFRP plates. The global capacity curves for the retrofitted frames are compared with their corresponding original frames to assess the improvement in seismic performance of the frames. Finally, an experimental investigation is carried out to assess the strength and stiffness properties of adhesively bonded steel/GFRP joints under cyclic loading. A number of shear lap tests are conducted and the obtained results are used to determine the characteristics of spring systems that simulate the shear and peel behaviour of the adhesive. Comparison is made between the stiffness and strength capacity under cyclic loading to the corresponding values under monotonic loading

    Effect of material properties on ductility factor of singly rc beam sections

    Get PDF
    Ductility may be defined as the ability to undergo deformations without a substantial reduction in the flexural capacity of the member. The ductility of reinforced concrete beams depends mainly on the shape of the moment-curvature relationship of the sections. The constituents of reinforced concrete are very complex due to its mechanical properties. The stress-strain behavior of concrete is considered parabolic and that of the steel is elastic plastic. Concrete and reinforcing steel are represented by separate material models that are combined together to describe the behavior of the reinforced concrete sections. The end displacements of the steel element are assumed to be compatible with the boundary displacements of the concrete element which implied perfect bond between them. The curvature ductility factor of singly reinforced concrete rectangular beams is derived taking into account the possible nonlinear behavior of the unconfined compressed concrete and reinforcing steel. Effects of material properties such as concrete compressive strength, reinforcement ratio and yield strength of reinforcement on the curvature ductility factors are derived analytically. From the analyses it is observed that an increasing steel content decreases the curvature ductility of a singly reinforced concrete section and this pattern is valid for any concrete strength. On the other hand, for the same reinforcement content curvature ductility increases as the concrete strength is increased

    Seismic Performance Assessment of Existing RC Frames with Different Ultimate Concrete Strains

    Get PDF
    In recent years, because of the older version code, inadequate design, lacks of construction supervision, change in loading pattern, damages and casualties of earthquakes or environmental degradation, buildings at risk need to be investigated frequently for safety purpose. To increase the strength and ductility capacities of deficient reinforced concrete (RC) beams, columns and beam-column joints, retrofitting may require. In this paper, a numerical investigation using nonlinear static pushover analysis is conducted to assess the seismic behavior of existing moment resisting RC frames. In numerical modeling, different plastic hinge lengths as well as different concrete ultimate strain conditions of RC members are considered. Pushover analysis has been carried out with the commercial software ETABS v.9.6.0 to evaluate structural behavior of RC frames located in a seismic region. Hinge properties simulating moment-rotation behavior of frame members considering different plastic hinge lengths as well as concrete ultimate strains are evaluated. Pushover curves are compared with each other to determine the plastic hinge length and strain values which provide better agreement with that of the default properties. Seismic performance criteria in terms of ductility, overstrength as well as response modification factor for frames are determined from pushover curves. From the analyses in general, the load carrying capacity as well as displacement at maximum lateral load and interstory drift index at any floor level of RC frames is assessed

    Behavior of Low Grade Steel Fiber Reinforced Concrete Made with Fresh and Recycled Brick Aggregates

    Get PDF
    In recent years, recycled aggregates from construction and demolition waste (CDW) have been widely accepted in construction sectors as the replacement of coarse aggregate in order to minimize the excessive use of natural resources. In this paper, an experimental investigation is carried out to observe the influence of low grade steel fiber reinforcements on the stress-strain behavior of concrete made with recycled and fresh brick aggregates. In addition, compressive strength by destructive and nondestructive tests, splitting tensile strength, and Young’s modulus are determined. Hooked end steel wires with 50 mm of length and an aspect ratio of 55.6 are used as fiber reinforcements in a volume fraction of 0% (control case), 0.50%, and 1.00% in concrete mixes. The same gradation of aggregates and water-cement ratio (w/c=0.44) were used to assess the effect of steel fiber in all these concrete mixes. All tests were conducted at 7, 14, and 28 days to perceive the effect of age on different mechanical properties. The experimental results show that around 10%~15% and 40%~60% increase in 28 days compressive strength and tensile strength of steel fiber reinforced concrete, respectively, compared to those of the control case. It is observed that the effect of addition of 1% fiber on the concrete compressive strength is little compared to that of 0.5% steel fiber addition. On the other hand, strain of concrete at failure of steel fiber reinforced concrete has increased almost twice compared to the control case. A simple analytical model is also proposed to generate the ascending portions of the stress-strain curve of concrete. There exists a good correlation between the experimental results and the analytical model. A relatively ductile failure is observed for the concrete made with low grade steel fibers

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Global wealth disparities drive adherence to COVID-safe pathways in head and neck cancer surgery

    Get PDF
    Peer reviewe

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≥ II, EF ≤35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Evaluation of Thrombolytic Activity of Four Bangladeshi Medicinal Plants, as a Possible Renewable Source for Thrombolytic Compounds

    No full text
    Four Bangladeshi medicinal plants Sansevieria trifasciata, Justica gendarussa, Hydnocarpus kurzii and Mesua nagassarium have been investigated for their in vitro thrombolytic activity. The clot lysis activity was assessed by addition of the test material to the pre-clotted blood and incubation for 90 min. at 37oC and was expressed as % lysis of clot. Each of the plant was extracted with methanol at room temperature and the concentrated methanolic extract was fractionated by the modified Kupchan partitioning method to provide pet-ether, carbon tetrachloride, chloroform and aqueous soluble fractions. Among the four plants the aqueous soluble fraction of M. nagassarium, carbon tetrachloride soluble fraction of H. Kurzii , aqueous soluble fraction of methanolic extract of S. trifasciata exhibited highest thrombolytic activity with clot lysis value of 50.86%, 47.50%, and 47.10% respectively. However, the pet ether and carbon tetrachloride soluble fraction of methanolic extract of J. gendarussa demonstrated significant thrombolytic activity as evident from 45.93% and 45.47% lysis of clot, respectively. Standard streptokinase was used as positive control which exhibited 61.50% lysis of clot while the negative control water revealed 2.56% lysis of clot

    Thigh-length compression stockings and DVT after stroke

    Get PDF
    Controversy exists as to whether neoadjuvant chemotherapy improves survival in patients with invasive bladder cancer, despite randomised controlled trials of more than 3000 patients. We undertook a systematic review and meta-analysis to assess the effect of such treatment on survival in patients with this disease
    corecore