3,214 research outputs found

    Differential involvement of Wnt signaling in Bmp regulation of cancellous versus periosteal bone growth

    Get PDF
    Bone morphogenetic proteins (Bmp) are well-known to induce bone formation following chondrogenesis, but the direct role of Bmp signaling in the osteoblast lineage is not completely understood. We have recently shown that deletion of the receptor Bmpr1a in the osteoblast lineage with Dmp1-Cre reduces osteoblast activity in general but stimulates proliferation of preosteoblasts specifically in the cancellous bone region, resulting in diminished periosteal bone growth juxtaposed with excessive cancellous bone formation. Because expression of sclerostin (SOST), a secreted Wnt antagonist, is notably reduced in the Bmpr1a-deficient osteocytes, we have genetically tested the hypothesis that increased Wnt signaling might mediate the increase in cancellous bone formation in response to Bmpr1a deletion. Forced expression of human SOST from a Dmp1 promoter fragment partially rescues preosteoblast hyperproliferation and cancellous bone overgrowth in the Bmpr1a mutant mice, demonstrating functional interaction between Bmp and Wnt signaling in the cancellous bone compartment. To test whether increased Wnt signaling can compensate for the defect in periosteal growth caused by Bmpr1a deletion, we have generated compound mutants harboring a hyperactive mutation (A214V) in the Wnt receptor Lrp5. However, the mutant Lrp5 does not restore periosteal bone growth in the Bmpr1a-deficient mice. Thus, Bmp signaling restricts cancellous bone accrual partly through induction of SOST that limits preosteoblast proliferation, but promotes periosteal bone growth apparently independently of Wnt activation

    Neutralization mechanism of a highly potent antibody against Zika virus

    Get PDF
    The rapid spread of Zika virus (ZIKV), which causes microcephaly and Guillain-Barré syndrome, signals an urgency to identify therapeutics. Recent efforts to rescreen dengue virus human antibodies for ZIKV cross-neutralization activity showed antibody C10 as one of the most potent. To investigate the ability of the antibody to block fusion, we determined the cryoEM structures of the C10-ZIKV complex at pH levels mimicking the extracellular (pH8.0), early (pH6.5) and late endosomal (pH5.0) environments. The 4.0 Å resolution pH8.0 complex structure shows that the antibody binds to E proteins residues at the intra-dimer interface, and the virus quaternary structure-dependent inter-dimer and inter-raft interfaces. At pH6.5, antibody C10 locks all virus surface E proteins, and at pH5.0, it locks the E protein raft structure, suggesting that it prevents the structural rearrangement of the E proteins during the fusion event—a vital step for infection. This suggests antibody C10 could be a good therapeutic candidate

    Using e-learning to support international students' dissertation preparation

    Get PDF
    Purpose: A research paper on the design and implementation of an e-learning resource responding to the globalisation of education. The purpose of this paper is to focus on the challenges presented in learning and teaching on how to support international postgraduate (PG) students undertaking the specific task of a dissertation. Design/methodology/approach: Using findings from 250 PG students, 40 supervisors and two module tutors the research identified the content and language issues faced by students and recognised the need to design an enabler supporting the latter as independent learners and the academic staff delivering support. Findings: The e-learning tool provides an independent learning tool which addresses student concerns relating to the process and content of structuring a dissertation and the function of language. Initial responses have been positive from both staff and students in respect to providing a source of student support and feedback. Originality/value: The research shows how the Dissertation Game Model (DGM), evolved into an e-learning resource supporting student understanding of the content, structure, planning and writing of a dissertation. The e-learning tool focuses on helping international students understand what the generic contents of each chapter of a dissertation should contain and supports them in engaging in research as a transferable skill

    Structural Basis of Competitive Recognition of p53 and MDM2 by HAUSP/USP7: Implications for the Regulation of the p53–MDM2 Pathway

    Get PDF
    Herpesvirus-associated ubiquitin-specific protease (HAUSP, also known as USP7), a deubiquitylating enzyme of the ubiquitin-specific processing protease family, specifically deubiquitylates both p53 and MDM2, hence playing an important yet enigmatic role in the p53–MDM2 pathway. Here we demonstrate that both p53 and MDM2 specifically recognize the N-terminal tumor necrosis factor–receptor associated factor (TRAF)–like domain of HAUSP in a mutually exclusive manner. HAUSP preferentially forms a stable HAUSP–MDM2 complex even in the presence of excess p53. The HAUSP-binding elements were mapped to a peptide fragment in the carboxy-terminus of p53 and to a short-peptide region preceding the acidic domain of MDM2. The crystal structures of the HAUSP TRAF-like domain in complex with p53 and MDM2 peptides, determined at 2.3-Å and 1.7-Å resolutions, respectively, reveal that the MDM2 peptide recognizes the same surface groove in HAUSP as that recognized by p53 but mediates more extensive interactions. Structural comparison led to the identification of a consensus peptide-recognition sequence by HAUSP. These results, together with the structure of a combined substrate-binding-and-deubiquitylation domain of HAUSP, provide important insights into regulation of the p53–MDM2 pathway by HAUSP

    Naphthalene flanked diketopyrrolopyrrole based organic semiconductors for high performance organic field effect transistors

    Get PDF
    Here, we design and synthesize three new diketopyrrolopyrrole (DPP) derivatives with naphthalene, possessing large-scaled p-delocalized electronic structure, as the flanking groups and both linear (n-decyl and n-dodecyl) and branched (2-hexyldecyl)alkyl chains as substitutions as active layer for high performance organic field-effect transistors (OFETs). The thermal, photophysical properties, energy levels and solid state molecular stacking have been studied in detail. All the materials show excellent thermal stability with a decomposition temperature of 400 °C, high semi-crystallinity feature, suitable HOMO & LUMO energy levels, and varying crystalline domain sizes in thin films. Bottom-contact/top-gate transistor devices are thus fabricated to investigate the mobility. Encouragingly, all compounds function well in OFET devices and show significant potential as p-type semiconducting materials. The monomer with the n-decyl alkyl chain (D-DPPN) shows the highest mobility of 0.019 cm2V-1s-1, with the Ion/Ioffratio reaching 106. We for the first time synthesize naphthalene flanked DPP monomers and achieve high mobility in OFET devices when using these monomers without any further functionalization as semiconductors directly. The primary result that high mobility is observed for monomers only opens a new way for further DPP application and provides more possibilities for constructing high performance polymeric and small molecular semiconductors based on this new DPP dye

    Ginsenoside Rd and ischemic stroke; a short review of literatures

    Get PDF
    Panax ginseng is a well-known economic medical plant which is broadly used in Chinese traditional medicine. This species contains unique class of natural products, namely ginsenosides. Recent clinical and experimental studies lined a plethora of evidences up for the promising role of ginsenosides on different diseases including neurodegenerative, cardiovascular, certain types of cancer, etc. Nowadays, much attention has been paid to ginsenoside Rd as neuroprotective agent to attenuate ischemic stroke damages. Several evidences reported that ginsenoside Rd ameliorate ischemic stroke-induced damages through the suppression of oxidative stress and inflammation. Ginsenoside Rd can prolong neural cells survival through up-regulation of endogenous antioxidant system, PI3K/AKT and ERK1/2 pathways, preservation of mitochondrial membrane potential, suppression of the nuclear factor (NF)-Kappa B, transient receptor potential melastatin, acid sensing ion channels 1a, Poly (ADP-ribose) polymerase-1, protein tyrosine kinase activation, as well as decreasing of cytochrome-C releasing and apoptosis-inducing factor. In the current work, we review the available reports on the promising role of ginsenoside Rd on ischemic stroke. We also discuss about its chemistry, source and molecular mechanism underlying this effects

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
    corecore