381 research outputs found

    Self-consistent description of nuclear compressional modes

    Get PDF
    Isoscalar monopole and dipole compressional modes are computed for a variety of closed-shell nuclei in a relativistic random-phase approximation to three different parametrizations of the Walecka model with scalar self-interactions. Particular emphasis is placed on the role of self-consistency which by itself, and with little else, guarantees the decoupling of the spurious isoscalar-dipole strength from the physical response and the conservation of the vector current. A powerful new relation is introduced to quantify the violation of the vector current in terms of various ground-state form-factors. For the isoscalar-dipole mode two distinct regions are clearly identified: (i) a high-energy component that is sensitive to the size of the nucleus and scales with the compressibility of the model and (ii) a low-energy component that is insensitivity to the nuclear compressibility. A fairly good description of both compressional modes is obtained by using a ``soft'' parametrization having a compression modulus of K=224 MeV.Comment: 28 pages and 10 figures; submitted to PR

    A retrospective evaluation of the impact of a dedicated obstetric and neonatal transport service on transport times within an urban setting

    Get PDF
    OBJECTIVE:To determine whether the establishment of a dedicated obstetric and neonatal flying squad resulted in improved performance within the setting of a major metropolitan area.DESIGN AND SETTING:The Cape Town metropolitan service of the Emergency Medical Services was selected for a retrospective review of the transit times for the newly implemented Flying Squad programme. Data were imported from the Computer Aided Dispatch programme. Dispatch, Response, Mean Transit and Total Pre-hospital times relating to the obstetric and neonatal incidents was analysed for 2005 and 2008. RESULTS: There was a significant improvement between 2005 and 2008 in all incidents evaluated. Flying Squad dispatch performance improved from 11.7% to 46.6% of all incidents dispatched within 4 min (p < 0.0001). Response time performance at the 15-min threshold did not demonstrate a statistically significant improvement (p = 0.4), although the improvement in the 30-min performance category was statistically significant in both maternity and neonatal incidents. Maternity incidents displayed the greatest improvement with the 30-min performance increasing from 30.3% to 72.9%. The analysis of the mean transit times demonstrated that neonatal transfers displayed the longest status time in all but one of the categories. Even so, the introduction of the Flying Squad programme resulted in a reduction in a total pre-hospital time from 177 to 128 min. CONCLUSION: The introduction of the Flying Squad programme has resulted in significant improvement in the transit times of both neonatal and obstetric patients. In spite of the severe resource constraints facing developing nations, the model employed offers significant gains

    Optimal Cross-Wind Towing and Power Generation with Tethered Kites

    Full text link
    Non-powered flight vehicles such as kites can provide a means of transmitting wind energy from higher altitudes to the ground via tethers. Although there have been many proposals for systems to extract wind energy from higher altitudes, this paper focuses on the use of a light lifting body at the end of a tether to generate useful power. Two major configurations are studied: 1) the kite is used to tow a ground vehicle in the cross-wind direction, 2) the kite is flown to generate power using a ground generator. In both cases, the useful work done by the kite is transmitted to the ground through the tether. Both applications require automatic control of the kite. A simplified system model is used to study the nature of the optimal trajectories of the system for different wind speeds. Numerical results illustrate that optimal power generation requires complex three-dimensional kite trajectories, whereas cross-wind towing requires much simpler trajectories. A feedback tracking controller is demonstrated for tracking the kite trajectories in the presence of unsteady winds

    Cytological changes related to Brucella canis variants uptake in vitro

    Full text link
    In this study, evidence for in vitro uptake, invasion, and cytopathogonomic effects of normal and variant strains of B. canis on tissue culture, is presented. B. canis L-phase were penicillin-induced and these microorganisms produced revertants on penicillin-free media. Tissue culture (LLC-MK 2 ) cells were divided into different normal and variant-infected groups (I–IV), including controls. Bright-field and electron microscopic observations indicated uptake of all the strains and recognizable host cell damage (CPE) to varying degrees. At 72 h after infection, the extent of damage by L-phase was the least (55.5% CPE). The L-phase-derived revertants resulted in 80% damage; this approximates the adverse effect of normal B. canis (85%). In addition to these gross changes, various structural abnormalities, including pyknosis, nuclear disorganization, vacuolation, and karyorrhexis, were apparent. The implications of these findings and the indirect role of the L-phase in brucellosis due to B. canis are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47529/1/430_2005_Article_BF02123560.pd

    Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya

    Get PDF
    Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization

    Global Search for New Physics with 2.0/fb at CDF

    Get PDF
    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (Vista) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps" that could indicate resonant production of new particles; and the Sleuth procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0/fb of ppbar collisions at sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D Rapid Communication

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
    corecore