20 research outputs found

    Much more than carbon: Element stocks in ice-rich permafrost of the Yedoma domain

    Get PDF
    Soils of the permafrost zone store globally relevant reservoirs of frozen matter, such as organic matter, mineral elements as well as other biogeochemical relevant compounds like contaminants. Besides the well-studied organic carbon (OC), other compounds can become available in active biological and hydrological element cycling as global climate change is warming northern permafrost regions nearly four times faster than the global average. Current heating in Siberia is unprecedented during the past seven millennia, triggering widespread permafrost degradation and collapse. This is especially relevant for our study region, the Yedoma domain. In this region, a large amount of belowground ice is present and the ground can become unstable with warming, allowing the mobilisation of previously frozen sediments with their geochemical element contents. With this presentation, we synthesise recent studies, which have improved the understanding of various frozen stocks. Here, we estimated that the Yedoma domain contains 41.2 Gt of nitrogen (N), which increases the previous estimate for the circumpolar permafrost zone by ~46 %. The highest element stock within the Yedoma domain is estimated for Si (2739 Gt), followed by Al, Fe, K, Ca, Ti, Mn, Zr, Sr, and Zn. The stocks of Al and Fe (598 and 288 Gt, respectively) are in the same order of magnitude as OC (327-466 Gt). Concerning contaminants, we focused on mercury. Using the ratio of mercury to OC (R(HgC), value based on own measurements: 2.57 μg Hg g C−1) and the OC levels from various studies for a first rough estimation of the Hg reservoir, we estimate the Yedoma mercury pool to be ~542,000 tons. In conclusion, we find that deep thaw of the Yedoma permafrost domain and its degradation will bear the potential to change the availability of various elements in active biogeochemical and hydrological cycles in northern regions, which will have the potential to change crucial ecosystem variables and services

    More than carbon: Frozen element inventories in ice-rich Yedoma permafrost

    Get PDF
    Soils of the permafrost zone store globally relevant reservoirs of frozen matter, such as organic matter, mineral elements as well as other biogeochemical relevant compounds like contaminants. Besides well-studied organic carbon (OC), other compounds can become available in active biological and hydrological element cycling as global climate change is warming northern permafrost regions nearly four times faster than the global average. Current heating in Siberia is unprecedented during the past seven millennia, triggering widespread permafrost degradation and collapse. This is especially relevant for our study region, the Yedoma domain. In this region, a large amount of belowground ice is present and the ground can become unstable with warming, allowing the mobilisation of previously frozen sediments with their geochemical element contents. With this presentation, we want to synthesise recent studies, which have improved the understanding of various frozen stocks. Here, we estimated that the Yedoma domain contains 41.2 Gt of nitrogen, which increases the previous estimate for the circumpolar permafrost zone by ~46%. The highest element stock within the Yedoma domain is estimated for r Si (2739 Gt), followed by Al, Fe, K, Ca, Ti, Mn, Zr, Sr, and Zn. The stocks of Al and Fe (598 and 288 Gt) are in the same order of magnitude as OC (327–466 Gt). Concerning contaminants, we focused on mercury. Using the ratio of mercury to OC (RHgC, our found value: 2.57 μg Hg g C−1) and the OC levels from various studies for a first rough estimation of the Hg reservoir, we estimate the Yedoma mercury pool to be ~542000 tons. In conclusion, we find that deep thaw of the Yedoma permafrost domain and its degradation will bear the potential to change the availability of various elements in active biogeochemical and hydrological cycles, which will have the potential to change crucial ecosystem variables and services

    Mercury in deep ice-rich permafrost deposits of Siberia. Russian Conference

    Get PDF
    The late Pleistocene ice-rich Yedoma permafrost is extremely sensitive to Arctic warming. Warming air temperatures, decreasing sea ice extent lead to an increasing degradation of the Yedoma permafrost and thus to a greater sediment input from coastal shorelines and river floodplains to the Laptev Sea. Thus, so far freeze-locked sediments and any potentially hazardous contaminants contained in them are entering Arctic waters and the biological food chain. Shallow (down to <2m) Arctic permafrost soil layers were found to include high levels of mercury (Hg) due to natural enrichment processes of environmentally available Hg (Schuster et al. 2018). However, opposed to seasonal thaw processes of the active layer and long-term gradual thaw through active layer deepening, abrupt thaw processes such as thermokarst, thermo-erosion, and coastal erosion are capable of mobilising permafrost-soils and stored contaminants from tens of meters depth within years to decades. In this study, we determined Hg concentrations from various deposits in Siberia’s deep permafrost sediments. We studied links between sediment properties and Hg enrichment in order to assess a first deep Hg inventory in late Pleistocene permafrost down to 36 m below surface. To do this, we used sediment profiles from seven sites representing different permafrost degradation states on Bykovsky Peninsula (northern Yakutian coast) and in the Yukechi Alas region (Central Yakutia). We analysed 41 samples for Hg content, total carbon, total nitrogen and organic carbon as well as grain size distribution, bulk density and mass specific magnetic susceptibility. Figure 1: (a) geographical overview and detailed location of the study site at Bykovsky Peninsula (b) and Yukechi Alas in Yakutia (c); (d) stratigraphical transect of the study sites and different states of degrading permafrost in Siberia. The numbers indicate the areas of interest in this study. 1) Talik in Yedoma (unfrozen), 2) late Pleistocene Yedoma (frozen), 3) talik in thermokarst (unfrozen), 4) refrozen drained lake basin = Alas (frozen), 5) talik in thermokarst close to sea (unfrozen), 6) talik below seawater flooded thermokarst basins (= lagoons) (unfrozen). We show that the deep sediments (to 30 meter below surface) are characterized by an Hg concentration of 9.72 ± 9.28 μg kg-1 and an correlation of Hg to organic carbon, total nitrogen, grain-size distribution and mass specific magnetic susceptibility. Hg concentrations are higher in the generally sandier sediment of the Bykovsky Peninsula than in the siltier sediment of the Yukechi Alas. In conclusion, we found that the deep permafrost sediments, frozen since tens of millennia, contain sizeable amounts of Hg. Even though the average amount of Hg is with 9.72 μg/kg below levels immediately critical for life and our median is 85 % less (Schuster et al. 2018) than found in Arctic topsoil outside Siberia. Even if the Hg concentrations are not particularly high compared to other sites, the permafrost’s huge spatial coverage results in a significant amount of Hg that can be introduce into nearby aquatic environments and food webs. As the next step, the consequences of old Hg re-entering the active biogeochemical cycles and food webs with ongoing Arctic warming remain unclear and need to be studied in more detail. References 1. Schuster, P. et al. Geophysical Research Letters, 2018, 45, 1463– 1471, https://doi.org/10.1002/2017GL07557

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    Creative Thinking and Modelling for the Decision Support in Water Management

    Full text link

    Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight NCD Risk Factor Collaboration (NCD-RisC)

    Get PDF
    From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions

    Mercury in Deep Ice-Rich Permafrost Deposits of Siberia

    No full text
    The ice-rich permafrost in Siberia (`Yedoma´) is extraordinarily prone to thawing due to Arctic warming resulting in an increased sediment input from coastal shorelines and river floodplains to the Laptev Sea. Freeze-locked deposits including hazardous heavy metals are now entering the Arctic Ocean. Shallow Arctic soil layers often show high levels of mercury (Hg). In this study, Hg concentrations from various deposits in Siberia´s deep permafrost soil were determined. Links between sediment properties and the Hg enrichment in order to assess a first deep Hg inventory in Pleistocene permafrost down to 36 m below surface were explored as well. Sediment profiles from seven sites of different permafrost degradation states on Bykovsky Peninsula (Northern Yakutia) and in the Yukechi Alas region (Central Yakutia) were analyzed for Hg content using a Direct Mercury Analyzer (DMA-80), based on photometric absorption. Total carbon, total nitrogen and organic carbon as well as grain size distribution, bulk density and mass specific magnetic susceptibility were investigated as sediment property parameters. Results reveal a Hg concentration of 9.72 ± 9.28 μg kg-1 and an explicit correlation of Hg to organic carbon, total nitrogen, grain size distribution and mass specific magnetic susceptibility. Moreover, Hg concentrations are higher in the generally sandier sediment of the Bykovsky Peninsula than in the siltier sediment of the Yukechi Alas. This is counterintuitive and may well be explained by proximity to the ocean and higher clay content in the more poorly sorted grain sizes there. This case study showed that the deep permafrost sediments, frozen since millennia, verifiably contain Hg. Even though it might not be an alarming amount, it could re-enter the recent biogeochemical cycles after thaw with ongoing Arctic warming

    Mercury in deep ice-rich permafrost deposits of Siberia

    No full text
    submitted by Clara RutkowskiLiteraturverzeichnis: Seite 67-74Paris Lodron University Salzburg, Masterarbeit, 2019(VLID)504322
    corecore