234 research outputs found

    Ultra-wide detuning planar Bragg grating fabrication technique based on direct UV grating writing with electro-optic phase modulation

    No full text
    A direct UV grating writing technique based on phase-controlled interferometry is proposed and demonstrated in a silica-on-silicon platform, with a wider wavelength detuning range than any previously reported UV writing technology. Electro-optic phase modulation of one beam in the interferometer is used to manipulate the fringe pattern and thus control the parameters of the Bragg gratings and waveguides. Various grating structures with refractive index apodization, phase shifts and index contrasts of up to 0.8×10-3 have been demonstrated. The method offers significant time/energy efficiency as well as simplified optical layout and fabrication process. We have shown Bragg gratings can be made from 1200 nm to 1900 nm exclusively under software control and the maximum peak grating reflectivity only decreases by 3dB over a 250 nm (~32THz) bandwidth

    Realisation of photonic Hilbert transformer with a simple planar Bragg grating

    No full text
    Photonic Hilbert transformers (PHTs) are desirable for the direct processing of optical signals at high speeds and operation bandwidths, allowing optical networks to outperform current electronic technologies. We practically demonstrate a photonic Hilbert transformer in planar geometry; utilising a pi-phase shift planar Bragg grating with proper apodization profile. The device is fabricated by direct UV grating writing technology in silica-on-silicon [1]. The PHT has a pi-phase shift at the zero point of the frequency response, whereas the amplitude remains constant. The pi-phase shift in PHT is simply induced by placing a pi-phase shift in the refractive index modulation. The constant amplitude is achieved by precise apodization of the grating coupling strength, while the apodization profile is given by [2]. With our current direct UV writing technology, the proposed grating can be fabricated in a much higher accuracy then the conventional fibre Bragg grating manufacturing technique. We will present our latest work on more complex apodized gratings to obtain the ideal realisable frequency and temporal responses for PHTs

    Simple planar Bragg grating devices for photonic Hilbert transform

    No full text
    Hilbert transformers are important devices widely used in information processing and signal analysis in the electronic domain. For example, for spectral efficiency improvement, it is used to construct the analytic signal for single sideband (SSB) modulation from a real signal. Photonic Hilbert transformers (PHTs) are proposed for a similar range of applications and would allow the direct processing of optical signals at bandwidths far beyond current electronic technologies

    Semi-supervised prediction of protein interaction sentences exploiting semantically encoded metrics

    Get PDF
    Protein-protein interaction (PPI) identification is an integral component of many biomedical research and database curation tools. Automation of this task through classification is one of the key goals of text mining (TM). However, labelled PPI corpora required to train classifiers are generally small. In order to overcome this sparsity in the training data, we propose a novel method of integrating corpora that do not contain relevance judgements. Our approach uses a semantic language model to gather word similarity from a large unlabelled corpus. This additional information is integrated into the sentence classification process using kernel transformations and has a re-weighting effect on the training features that leads to an 8% improvement in F-score over the baseline results. Furthermore, we discover that some words which are generally considered indicative of interactions are actually neutralised by this process

    Phase modulation technique for high modulation wide band planar Bragg grating fabrication

    No full text
    Direct UV Grating Writing (DGW) is effective route for fabricating high quality Bragg gratings, similar to fiber Bragg gratings, in a planar geometry. We will present a phase modulation controlled DGW method using an Electro-Optical Modulator for planar Bragg grating fabrication that offers improved performance. This new approach not only provides much greater modulation depths for stronger and shorter Bragg gratings but also offers greater fabrication speed and a higher fidelity of control than previous amplitude modulation methods

    All-optical signal processing using planar Bragg gratings

    No full text
    The fabrication techniques of Bragg gratings broadly fall into two categories: that are holographic, and that are non-interferometric, based on the periodical UV radiation along the photosensitive medium. The fabrication technique in this work is the direct UV grating writing (DGW). This method involves focusing two crossed laser beams (lambda=244nm) into a photosensitive core layer. Precise translation of the sample and modulation of the interference pattern define the channel waveguide and simultaneously create grating structures, shown in Figure 1. First developed at Optoelectronics Research Centre in 2002, it has similarities to the UV writing techniques used for fiber Bragg grating inscription. Advanced grating properties such as chirp, phase shifts, and apodisation are introduced by adjusting the laser intensity and the translating speed

    Designing Playful Games and Applications to Support Science Centers Learning Activities

    Get PDF
    In recent years there has been a renewed interest on science, technology, engineering, and mathematics (STEM) education. Following this interest, science centers\u27 staff started providing technology enhanced informal STEM education experiences. The use of well-designed mobile and ubiquitous forms of technology to enrich informal STEM education activities is an essential success factor. The goal of our research is to investigate how technology applications can be better used and developed for taking full advantage of the opportunities and challenges they provide for students learning about STEM concepts. In our approach, we have conducted a series of interviews with experts from science center curating and outdoor learning activities development, with the final goal of exploring and improving current learning environments and practices. This paper presents the development of set of design considerations for the development of STEM games and applications of young students. An initial set of best practices was first developed through semi-structures interviews with experts; and afterwards, by employing content analysis, a revised set of considerations was obtained. These results are useful for STEM education teachers, curriculum designers, curators and developers for K-12 education environments

    The role of formal controls in facilitating information system diffusion

    Get PDF
    Information systems (IS) studies highlight that IS usage, a pre-requisite for IS diffusion, may be difficult to attain when usage is voluntary because users can resist using the system. User resistance may be overcome through the application of organizational controls. Control theory explains how users' actions and practices are shaped in line with organizational guidelines and procedures. This paper reports on a qualitative case study and shows how formal control mechanisms (behavior and outcome controls) can have a positive and conclusive impact on IS diffusion. The paper makes three contributions to knowledge. First, it proposes a model of IS diffusion, which explains how the application of outcome control mechanisms can lead to IS diffusion despite user resistance. Second, it suggests that IS diffusion paths are iterative, rather than smooth and linear. Finally, the paper demonstrates that despite a lack of reward expectancy, sanction expectancy can be effective during an IS diffusion process

    Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya

    Get PDF
    Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
    corecore