985 research outputs found

    Speciation and structure of dipicolinate complexes and Eu(III) ions in solution

    Get PDF
    Complexation between Eu(III) ions and dipicolinate tridentate ligands (DPA) have been studied to expand on our current understanding of structural and photophysical properties of lanthanides in solution. The dynamic ligand-exchange of labile lanthanide ions, has made it difficult to properly identify the bis ligated Eu(III) complex, as optical spectroscopy only reveals a weighted average of the present species. In this article, evidence for the bis ligated Eu(III) complex will be presented, which is a necessary component in accurately determining the binding constants and to gain further insight in the structure- property relationship of the systems. Additionally, NMR, luminescence spectroscopy and X-ray scattering were used as structural corroboration to further establish the relationship between the solution structure and the intensities of Laporte parity forbidden f-f transitions, characteristic of the lanthanides

    Precise measurement of the W-boson mass with the CDF II detector

    Get PDF
    We have measured the W-boson mass MW using data corresponding to 2.2/fb of integrated luminosity collected in proton-antiproton collisions at 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470126 W->enu candidates and 624708 W->munu candidates yield the measurement MW = 80387 +- 12 (stat) +- 15 (syst) = 80387 +- 19 MeV. This is the most precise measurement of the W-boson mass to date and significantly exceeds the precision of all previous measurements combined

    Search for the standard model Higgs boson at LEP

    Get PDF

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Using Polarized Spectroscopy to Investigate Order in Thin-Films of Ionic Self-Assembled Materials Based on Azo-Dyes

    Get PDF
    Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained

    Measurements of the leptonic branching fractions of the τ\tau

    Get PDF
    Data collected with the DELPHI detector from 1993 to 1995 combined with previous DELPHI results for data from 1991 and 1992 yield the branching fractions B({\tau \rightarrow \mbox{\rm e} \nu \bar{\nu}}) = (17.877 \pm 0.109_{stat} \pm 0.110_{sys} )\% and B(τμννˉ)=(17.325±0.095stat±0.077sys)%B({\tau \rightarrow \mu \nu \bar{\nu}}) = (17.325 \pm 0.095_{stat} \pm 0.077_{sys} )\%

    Investigation of the splitting of quark and gluon jets

    Get PDF
    The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays with the Delphi detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation TeX . The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resolution TeX , with NLLA calculations. The maximum of the ratio of the primary subjet splittings in quark and gluon jets is TeX . Due to non-perturbative effects, the data are below the expectation at small TeX . The transition from the perturbative to the non-perturbative domain appears at smaller TeX for quark jets than for gluon jets. Combined with the observed behaviour of the higher rank splittings, this explains the relatively small multiplicity ratio between gluon and quark jets

    Search for Neutral Heavy Leptons Produced in Z Decays

    Get PDF
    Weak isosinglet Neutral Heavy Leptons (νm\nu_m) have been searched for using data collected by the DELPHI detector corresponding to 3.3×1063.3\times 10^{6} hadronic~Z0^{0} decays at LEP1. Four separate searches have been performed, for short-lived νm\nu_m production giving monojet or acollinear jet topologies, and for long-lived νm\nu_m giving detectable secondary vertices or calorimeter clusters. No indication of the existence of these particles has been found, leading to an upper limit for the branching ratio BR(BR(Z0νmν)^0\rightarrow \nu_m \overline{\nu}) of about 1.3×1061.3\times10^{-6} at 95\% confidence level for νm\nu_m masses between 3.5 and 50 GeV/c2c^2. Outside this range the limit weakens rapidly with the νm\nu_m mass. %Special emphasis has been given to the search for monojet--like topologies. One event %has passed the selection, in agreement with the expectation from the reaction: %e+eˉννˉe^+e^- \rightarrow\ell \bar\ell \nu\bar\nu. The results are also interpreted in terms of limits for the single production of excited neutrinos

    Search for scalar fermions and long-lived scalar leptons at centre-of-mass energies of 130 GeV to 172 GeV

    Get PDF
    Data taken by DELPHI during the 1995 and 1996 LEP runs have been used to search for the supersymmetric partners of electron, muon and tau leptons and of top and bottom quarks. The observations are in agreement with standard model predictions. Limits are set on sfermion masses. Searches for long lived scalar leptons from low scale supersymmetry breaking models exclude stau masses below 55~GeV/c2^2 at the 95\% confidence level, irrespective of the gravitino mass
    corecore