288 research outputs found
Two-level system with a thermally fluctuating transfer matrix element: Application to the problem of DNA charge transfer
Charge transfer along the base-pair stack in DNA is modeled in terms of
thermally-assisted tunneling between adjacent base pairs. Central to our
approach is the notion that tunneling between fluctuating pairs is rate-limited
by the requirement of their optimal alignment. We focus on this aspect of the
process by modeling two adjacent base pairs in terms of a classical damped
oscillator subject to thermal fluctuations as described by a Fokker-Planck
equation. We find that the process is characterized by two time scales, a
result that is in accord with experimental findings.Comment: original file is revtex4, 10 pages, three eps figure
The outer halos of elliptical galaxies
Recent progress is summarized on the determination of the density
distributions of stars and dark matter, stellar kinematics, and stellar
population properties, in the extended, low surface brightness halo regions of
elliptical galaxies. With integral field absorption spectroscopy and with
planetary nebulae as tracers, velocity dispersion and rotation profiles have
been followed to ~4 and ~5-8 effective radii, respectively, and in M87 to the
outer edge at ~150 kpc. The results are generally consistent with the known
dichotomy of elliptical galaxy types, but some galaxies show more complex
rotation profiles in their halos and there is a higher incidence of
misalignments, indicating triaxiality. Dynamical models have shown a range of
slopes for the total mass profiles, and that the inner dark matter densities in
ellipticals are higher than in spiral galaxies, indicating earlier assembly
redshifts. Analysis of the hot X-ray emitting gas in X-ray bright ellipticals
and comparison with dynamical mass determinations indicates that non-thermal
components to the pressure may be important in the inner ~10 kpc, and that the
properties of these systems are closely related to their group environments.
First results on the outer halo stellar population properties do not yet give a
clear picture. In the halo of one bright galaxy, lower [alpha/Fe] abundances
indicate longer star formation histories pointing towards late accretion of the
halo. This is consistent with independent evidence for on-going accretion, and
suggests a connection to the observed size evolution of elliptical galaxies
with redshift.Comment: 8 pages. Invited review to appear in the proceedings of "Galaxies and
their Masks" eds. Block, D.L., Freeman, K.C. & Puerari, I., 2010, Springer
(New York
Electron-electron interactions and two-dimensional - two-dimensional tunneling
We derive and evaluate expressions for the dc tunneling conductance between
interacting two-dimensional electron systems at non-zero temperature. The
possibility of using the dependence of the tunneling conductance on voltage and
temperature to determine the temperature-dependent electron-electron scattering
rate at the Fermi energy is discussed. The finite electronic lifetime produced
by electron-electron interactions is calculated as a function of temperature
for quasiparticles near the Fermi circle. Vertex corrections to the random
phase approximation substantially increase the electronic scattering rate. Our
results are in an excellent quantitative agreement with experiment.Comment: Revtex style, 21 pages and 8 postscript figures in a separate file;
Phys. Rev. B (in press
Measurement of single electron emission in two-phase xenon
We present the first measurements of the electroluminescence response to the
emission of single electrons in a two-phase noble gas detector. Single
ionization electrons generated in liquid xenon are detected in a thin gas layer
during the 31-day background run of the ZEPLIN-II experiment, a two-phase xenon
detector for WIMP dark matter searches. Both the pressure dependence and
magnitude of the single-electron response are in agreement with previous
measurements of electroluminescence yield in xenon. We discuss different
photoionization processes as possible cause for the sample of single electrons
studied in this work. This observation may have implications for the design and
operation of future large-scale two-phase systems.Comment: 11 pages, 6 figure
The ZEPLIN II dark matter detector: data acquisition system and data reduction
ZEPLIN-II is a two-phase (liquid/gas) xenon dark matter detector searching
for WIMP-nucleon interactions. In this paper we describe the data acquisition
system used to record the data from ZEPLIN-II and the reduction procedures
which parameterise the data for subsequent analysis.Comment: 11 pages, 10 figure
The ZEPLIN II dark matter detector: data acquisition system and data reduction
ZEPLIN-II is a two-phase (liquid/gas) xenon dark matter detector searching
for WIMP-nucleon interactions. In this paper we describe the data acquisition
system used to record the data from ZEPLIN-II and the reduction procedures
which parameterise the data for subsequent analysis.Comment: 11 pages, 10 figure
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Herschel observations of EXtra-Ordinary Sources (HEXOS): Observations of H2O and its isotopologues towards Orion KL
We report the detection of more than 48 velocity-resolved ground rotational state transitions of H 16
2 O, H 18
2 O, and H 17
2 O – most for the first time
– in both emission and absorption toward Orion KL using Herschel/HIFI. We show that a simple fit, constrained to match the known emission
and absorption components along the line of sight, is in excellent agreement with the spectral profiles of all the water lines. Using the measured
H 18
2 O line fluxes, which are less affected by line opacity than their H 16
2 O counterparts, and an escape probability method, the column densities
of H 18
2 O associated with each emission component are derived. We infer total water abundances of 7.4 × 10−5, 1.0× 10−5, and 1.6 × 10−5 for the
plateau, hot core, and extended warm gas, respectively. In the case of the plateau, this value is consistent with previous measures of the Orion-KL
water abundance as well as those of other molecular outflows. In the case of the hot core and extended warm gas, these values are somewhat higher
than water abundances derived for other quiescent clouds, suggesting that these regions are likely experiencing enhanced water-ice sublimation
from (and reduced freeze-out onto) grain surfaces due to the warmer dust in these sources
Herschel observations of EXtra-Ordinary Sources (HEXOS): Detection of hydrogen fluoride in absorption towards Orion KL
We report a detection of the fundamental rotational transition of hydrogen fluoride in absorption towards Orion KL using Herschel/HIFI. After the
removal of contaminating features associated with common molecules (“weeds”), the HF spectrum shows a P-Cygni profile, with weak redshifted
emission and strong blue-shifted absorption, associated with the low-velocity molecular outflow. We derive an estimate of 2.9 × 1013 cm−2 for the
HF column density responsible for the broad absorption component. Using our best estimate of the H2 column density within the low-velocity
molecular outflow, we obtain a lower limit of ∼1.6 × 10−10 for the HF abundance relative to hydrogen nuclei, corresponding to ∼0.6% of the solar
abundance of fluorine. This value is close to that inferred from previous ISO observations of HF J = 2−1 absorption towards Sgr B2, but is in
sharp contrast to the lower limit of 6 × 10−9 derived by Neufeld et al. for cold, foreground clouds on the line of sight towards G10.6-0.4
- …