1,187 research outputs found

    Performance and Fundamental Processes at Low Energy in a Two-Phase Liquid Xenon Dark Matter Detector

    Get PDF
    We extend the study of the performance of a prototype two-phase liquid xenon WIMP dark matter detector to recoil energies below 20 keV. We demonstrate a new method for obtaining the best estimate of the energies of events using a calibrated sum of charge and light signals and introduce the corresponding discrimination parameter, giving its mean value at 4 kV/cm for electron and nuclear recoils up to 300 and 100 keV, respectively. We show that fluctuations in recombination limit discrimination for most energies, and reveal an improvement in discrimination below 20 keV due to a surprising increase in ionization yield for low energy electron recoils. This improvement is crucial for a high-sensitivity dark matter search.Comment: 4 pages, 6 figures, submitted to DM06 conference proceedings in Nucl Phys

    Scintillation Pulse Shape Discrimination in a Two-Phase Xenon Time Projection Chamber

    Full text link
    The energy and electric field dependence of pulse shape discrimination in liquid xenon have been measured in a 10 gm two-phase xenon time projection chamber. We have demonstrated the use of the pulse shape and charge-to-light ratio simultaneously to obtain a leakage below that achievable by either discriminant alone. A Monte Carlo is used to show that the dominant fluctuation in the pulse shape quantity is statistical in nature, and project the performance of these techniques in larger detectors. Although the performance is generally weak at low energies relevant to elastic WIMP recoil searches, the pulse shape can be used in probing for higher energy inelastic WIMP recoils.Comment: 7 pages, 11 figure

    Performance of a Large Area Avalanche Photodiode in a Liquid Xenon Ionization and Scintillation Chamber

    Get PDF
    Scintillation light produced in liquid xenon (LXe) by alpha particles, electrons and gamma-rays was detected with a large area avalanche photodiode (LAAPD) immersed in the liquid. The alpha scintillation yield was measured as a function of applied electric field. We estimate the quantum efficiency of the LAAPD to be 45%. The best energy resolution from the light measurement at zero electric field is 7.5%(sigma) for 976 keV internal conversion electrons from Bi-207 and 2.6%(sigma) for 5.5 MeV alpha particles from Am-241. The detector used for these measurements was also operated as a gridded ionization chamber to measure the charge yield. We confirm that using a LAAPD in LXe does not introduce impurities which inhibit the drifting of free electrons.Comment: 13 pages, 8 figure

    Scintillation and charge extraction from the tracks of energetic electrons in superfluid helium-4

    Full text link
    An energetic electron passing through liquid helium causes ionization along its track. The ionized electrons quickly recombine with the resulting positive ions, which leads to the production of prompt scintillation light. By applying appropriate electric fields, some of the ionized electrons can be separated from their parent ions. The fraction of the ionized electrons extracted in a given applied field depends on the separation distance between the electrons and the ions. We report the determination of the mean electron-ion separation distance for charge pairs produced along the tracks of beta particles in superfluid helium at 1.5 K by studying the quenching of the scintillation light under applied electric fields. Knowledge of this mean separation parameter will aid in the design of particle detectors that use superfluid helium as a target material.Comment: 10 pages, 8 figure

    Study of Counting Characteristics of Porous Radiation Detectors

    Get PDF
    This paper presents the development of a new technology of registration of ionizing radiation and a new type of detectors - single-cathode multiwire porous detector with neither a gaseous nor semiconductor, but a porous dielectric substance, e.g., CsI, being used as working medium. It is shown that the performance of the multiwire porous detector is stable, ensuring highly efficient detection of both heavily ionizing particles and soft X-rays with a spatial resolution better than ±60μm\pm 60\mu m. The continuous stable performance opens up new perspectives for using porous detectors in research as well as medicine. The obtained data are basic for the development of the theory of the phenomenon of electrons' drift and multiplication in porous dielectrics under the action of a strong external electric field.Comment: 43

    Design and Performance of the XENON10 Dark Matter Experiment

    Full text link
    XENON10 is the first two-phase xenon time projection chamber (TPC) developed within the XENON dark matter search program. The TPC, with an active liquid xenon (LXe) mass of about 14 kg, was installed at the Gran Sasso underground laboratory (LNGS) in Italy, and operated for more than one year, with excellent stability and performance. Results from a dark matter search with XENON10 have been published elsewhere. In this paper, we summarize the design and performance of the detector and its subsystems, based on calibration data using sources of gamma-rays and neutrons as well as background and Monte Carlo simulations data. The results on the detector's energy threshold, energy and position resolution, and overall efficiency show a performance that exceeds design specifications, in view of the very low energy threshold achieved (<10 keVr) and the excellent energy resolution achieved by combining the ionization and scintillation signals, detected simultaneously

    Transient thermal effects in solid noble gases as materials for the detection of Dark Matter

    Full text link
    The transient phenomena produced in solid noble gases by the stopping of the recoils resulting from the elastic scattering processes of WIMPs from the galactic halo were modelled, as dependencies of the temperatures of lattice and electronic subsystems on the distance to the recoil's trajectory, and time from its passage. The peculiarities of these thermal transients produced in Ar, Kr and Xe were analysed for different initial temperatures and WIMP energies, and were correlated with the characteristics of the targets and with the energy loss of the recoils. The results were compared with the thermal spikes produced by the same WIMPs in Si and Ge. In the range of the energy of interest, up to tens of keV for the self-recoil, local phase transitions solid - liquid and even liquid - gas were found possible, and the threshold parameters were established.Comment: Minor corrections and updated references; accepted to JCA

    3D Position Sensitive XeTPC for Dark Matter Search

    Get PDF
    The technique to realize 3D position sensitivity in a two-phase xenon time projection chamber (XeTPC) for dark matter search is described. Results from a prototype detector (XENON3) are presented.Comment: Presented at the 7th UCLA Symposium on "Sources and Detection of Dark Matter and Dark Energy in the Universe
    • …
    corecore