57 research outputs found

    Rapid carbon accumulation at a saltmarsh restored by managed realignment exceeded carbon emitted in direct site construction

    Get PDF
    Increasing attention is being paid to the carbon sequestration and storage services provided by coastal blue carbon ecosystems such as saltmarshes. Sites restored by managed realignment, where existing sea walls are breached to reinstate tidal inundation to the land behind, have considerable potential to accumulate carbon through deposition of sediment brought in by the tide and burial of vegetation in the site. While this potential has been recognised, it is not yet a common motivating factor for saltmarsh restoration, partly due to uncertainties about the rate of carbon accumulation and how this balances against the greenhouse gases emitted during site construction. We use a combination of field measurements over four years and remote sensing to quantify carbon accumulation at a large managed realignment site, Steart Marshes, UK. Sediment accumulated rapidly at Steart Marshes (mean of 75 mm yr-1) and had a high carbon content (4.4% total carbon, 2.2% total organic carbon), resulting in carbon accumulation of 36.6 t ha-1 yr-1 total carbon (19.4 t ha-1 yr-1 total organic carbon). This rate of carbon accumulation is an order of magnitude higher than reported in many other restored saltmarshes, and is somewhat higher than values previously reported from another hypertidal system (Bay of Fundy, Canada). The estimated carbon emissions associated with the construction of the site were ~2–4% of the observed carbon accumulation during the study period, supporting the view that managed realignment projects in such settings may have significant carbon accumulation benefits. However, uncertainties such as the origin of carbon (allochthonous or autochthonous) and changes in gas fluxes need to be resolved to move towards a full carbon budget for saltmarsh restoration

    Study protocol: a pragmatic, stepped-wedge trial of tailored support for implementing social determinants of health documentation/action in community health centers, with realist evaluation

    Get PDF
    Abstract Background National leaders recommend documenting social determinants of health and actions taken to address social determinants of health in electronic health records, and a growing body of evidence suggests the health benefits of doing so. However, little evidence exists to guide implementation of social determinants of health documentation/action. Methods This paper describes a 5-year, mixed-methods, stepped-wedge trial with realist evaluation, designed to test the impact of providing 30 community health centers with step-by-step guidance on implementing electronic health record-based social determinants of health documentation. This guidance will entail 6 months of tailored support from an interdisciplinary team, including training and technical assistance. We will report on tailored support provided at each of five implementation steps; impact of tailored implementation support; a method for tracking such tailoring; and context-specific pathways through which these tailored strategies effect change. We will track the competencies and resources needed to support the study clinics’ implementation efforts. Discussion Results will inform how to tailor implementation strategies to meet local needs in real-world practice settings. Secondary analyses will assess impacts of social determinants of health documentation and referral-making on diabetes outcomes. By learning whether and how scalable, tailored implementation strategies help community health centers adopt social determinants of health documentation and action, this study will yield timely guidance to primary care providers. We are not aware of previous studies exploring implementation strategies that support adoption of social determinants of action using electronic health and interventions, despite the pressing need for such guidance. Trial registration clinicaltrials.gov, NCT03607617 , registration date: 7/31/2018—retrospectively registere

    Bioinformatics-Based Identification of Expanded Repeats: A Non-reference Intronic Pentamer Expansion in RFC1 Causes CANVAS

    Get PDF
    Genomic technologies such as next-generation sequencing (NGS) are revolutionizing molecular diagnostics and clinical medicine. However, these approaches have proven inefficient at identifying pathogenic repeat expansions. Here, we apply a collection of bioinformatics tools that can be utilized to identify either known or novel expanded repeat sequences in NGS data. We performed genetic studies of a cohort of 35 individuals from 22 families with a clinical diagnosis of cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS). Analysis of whole-genome sequence (WGS) data with five independent algorithms identified a recessively inherited intronic repeat expansion [(AAGGG)exp] in the gene encoding Replication Factor C1 (RFC1). This motif, not reported in the reference sequence, localized to an Alu element and replaced the reference (AAAAG)11 short tandem repeat. Genetic analyses confirmed the pathogenic expansion in 18 of 22 CANVAS-affected families and identified a core ancestral haplotype, estimated to have arisen in Europe more than twenty-five thousand years ago. WGS of the four RFC1-negative CANVAS-affected families identified plausible variants in three, with genomic re-diagnosis of SCA3, spastic ataxia of the Charlevoix-Saguenay type, and SCA45. This study identified the genetic basis of CANVAS and demonstrated that these improved bioinformatics tools increase the diagnostic utility of WGS to determine the genetic basis of a heterogeneous group of clinically overlapping neurogenetic disorders

    Training future generations to deliver evidence-based conservation and ecosystem management

    Get PDF
    1. To be effective, the next generation of conservation practitioners and managers need to be critical thinkers with a deep understanding of how to make evidence-based decisions and of the value of evidence synthesis. 2. If, as educators, we do not make these priorities a core part of what we teach, we are failing to prepare our students to make an effective contribution to conservation practice. 3. To help overcome this problem we have created open access online teaching materials in multiple languages that are stored in Applied Ecology Resources. So far, 117 educators from 23 countries have acknowledged the importance of this and are already teaching or about to teach skills in appraising or using evidence in conservation decision-making. This includes 145 undergraduate, postgraduate or professional development courses. 4. We call for wider teaching of the tools and skills that facilitate evidence-based conservation and also suggest that providing online teaching materials in multiple languages could be beneficial for improving global understanding of other subject areas.Peer reviewe

    Improving risk management for violence in mental health services: a multimethods approach

    Get PDF
    contractual_start_date: 07-2008 editorial_review_begun: 07-2014 accepted_for_publication: 06-2015contractual_start_date: 07-2008 editorial_review_begun: 07-2014 accepted_for_publication: 06-2015contractual_start_date: 07-2008 editorial_review_begun: 07-2014 accepted_for_publication: 06-2015contractual_start_date: 07-2008 editorial_review_begun: 07-2014 accepted_for_publication: 06-201

    Long-term thermal sensitivity of Earth’s tropical forests

    Get PDF
    The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (−9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth’s climate

    A Novel CACNA1A Nonsense Variant [c.4054C>T (p.Arg1352⁎)] Causing Episodic Ataxia Type 2

    No full text
    Episodic ataxia is a heterogenous group of uncommon neurological disorders characterised by recurrent episodes of vertigo, dysarthria, and ataxia for which a variety of different genetic variations have been implicated. Episodic ataxia type two (EA2) is the most common and also has the largest number of identified causative genetic variants. Treatment with acetazolamide is effective in improving symptoms, so accurate diagnosis is essential. However, a large proportion of patients with EA2 have negative genetic testing. We present a patient with a typical history of EA2 who had a novel variant in the CACNA1A gene not previously described. Report of such variations is important in learning more about the disease and improving diagnostic yield for the patient
    corecore