1,569 research outputs found

    A Tractable Inference Algorithm for Diagnosing Multiple Diseases

    Full text link
    We examine a probabilistic model for the diagnosis of multiple diseases. In the model, diseases and findings are represented as binary variables. Also, diseases are marginally independent, features are conditionally independent given disease instances, and diseases interact to produce findings via a noisy OR-gate. An algorithm for computing the posterior probability of each disease, given a set of observed findings, called quickscore, is presented. The time complexity of the algorithm is O(nm-2m+), where n is the number of diseases, m+ is the number of positive findings and m- is the number of negative findings. Although the time complexity of quickscore i5 exponential in the number of positive findings, the algorithm is useful in practice because the number of observed positive findings is usually far less than the number of diseases under consideration. Performance results for quickscore applied to a probabilistic version of Quick Medical Reference (QMR) are provided.Comment: Appears in Proceedings of the Fifth Conference on Uncertainty in Artificial Intelligence (UAI1989

    An Empirical Comparison of Three Inference Methods

    Full text link
    In this paper, an empirical evaluation of three inference methods for uncertain reasoning is presented in the context of Pathfinder, a large expert system for the diagnosis of lymph-node pathology. The inference procedures evaluated are (1) Bayes' theorem, assuming evidence is conditionally independent given each hypothesis; (2) odds-likelihood updating, assuming evidence is conditionally independent given each hypothesis and given the negation of each hypothesis; and (3) a inference method related to the Dempster-Shafer theory of belief. Both expert-rating and decision-theoretic metrics are used to compare the diagnostic accuracy of the inference methods.Comment: Appears in Proceedings of the Fourth Conference on Uncertainty in Artificial Intelligence (UAI1988

    Decision-Theoretic Foundations for Causal Reasoning

    Full text link
    We present a definition of cause and effect in terms of decision-theoretic primitives and thereby provide a principled foundation for causal reasoning. Our definition departs from the traditional view of causation in that causal assertions may vary with the set of decisions available. We argue that this approach provides added clarity to the notion of cause. Also in this paper, we examine the encoding of causal relationships in directed acyclic graphs. We describe a special class of influence diagrams, those in canonical form, and show its relationship to Pearl's representation of cause and effect. Finally, we show how canonical form facilitates counterfactual reasoning.Comment: See http://www.jair.org/ for any accompanying file
    • …
    corecore