1,556 research outputs found

    Retropharyngeal Abscess in a Neonate After Extravasation Injury: To Drain or not to Drain?

    Get PDF
    Neonatal retropharyngeal abscess (RPA) is a rare and life-threatening entity. Most of the cases are idiopathic in nature. We encountered a case of RPA in a newborn secondary to extravasation injury. The presence of neck swelling with clinical deterioration following extravasation of total parenteral nutrition (TPN) infused via a peripherally inserted central catheter at the right upper limb raised the suspicion of neck abscess. This was later confirmed to be RPA based on magnetic resonance imaging of the neck. She was treated with prolonged intravenous antibiotics in the Neonatal Intensive Care Unit (NICU). Her condition gradually improved, evidenced by resolution of the collection on serial imaging. Early recognition and prompt management are crucial to reduce the morbidity and mortality from RPA

    A Rare Case of Pseudomembranous Tracheitis Presenting as Acute Stridor in a Patient after Extubation

    Get PDF
    Pseudomembranous tracheitis is a rare life-threatening complication of endotracheal intubation. The exact mechanism of its formation is not well known, and it could mimic crusting or retained secretions in the trachea. We encountered a patient with history of recent intubation, presenting with acute stridor requiring emergency airway stabilization, and was eventually found to have pseudomembranous tracheitis

    Serum microRNA characterization identifies miR-885-5p as a potential marker for detecting liver pathologies

    Get PDF
    Circulating miRNAs (microRNAs) are emerging as promising biomarkers for several pathological conditions, and the aim of this study was to investigate the feasibility of using serum miRNAs as biomarkers for liver pathologies. Real-time qPCR (quantitative PCR)-based TaqMan MicroRNA arrays were first employed to profile miRNAs in serum pools from patients with HCC (hepatocellular carcinoma) or LC (liver cirrhosis) and from healthy controls. Five miRNAs (i.e. miR-885-5p, miR-574-3p, miR-224, miR-215 and miR-146a) that were up-regulated in the HCC and LC serum pools were selected and further quantified using real-time qPCR in patients with HCC, LC, CHB (chronic hepatitis B) or GC (gastric cancer) and in normal controls. The present study revealed that more than 110 miRNA species in the serum samples and wide distribution ranges of serum miRNAs were observed. The levels of miR-885-5p were significantly higher in sera from patients with HCC, LC and CHB than in healthy controls or GC patients. miR-885-5p yielded an AUC [the area under the ROC (receiver operating characteristic) curve] of 0.904 [95% CI (confidence interval), 0.837–0.951, P<0.0001) with 90.53% sensitivity and 79.17% specificity in discriminating liver pathologies from healthy controls, using a cut off value of 1.06 (normalized). No correlations between increased miR-885-5p and liver function parameters [AFP (α-fetoprotein), ALT (alanine aminotransferase), AST (aspartate aminotransferase) and GGT (γ-glutamyl transpeptidase)] were observed in patients with liver pathologies. In summary, miR-885-5p is significantly elevated in the sera of patients with liver pathologies, and our data suggest that serum miRNAs could serve as novel complementary biomarkers for the detection and assessment of liver pathologies

    Reciprocal Interaction between Macrophages and T cells Stimulates IFN-γ and MCP-1 Production in Ang II-induced Cardiac Inflammation and Fibrosis

    Get PDF
    Background: The inflammatory response plays a critical role in hypertension-induced cardiac remodeling. We aimed to study how interaction among inflammatory cells causes inflammatory responses in the process of hypertensive cardiac fibrosis. Methodology/Principal Findings: Infusion of angiotensin II (Ang II, 1500 ng/kg/min) in mice rapidly induced the expression of interferon c (IFN-c) and leukocytes infiltration into the heart. To determine the role of IFN-c on cardiac inflammation and remodeling, both wild-type (WT) and IFN-c-knockout (KO) mice were infused Ang II for 7 days, and were found an equal blood pressure increase. However, knockout of IFN-c prevented Ang II-induced: 1) infiltration of macrophages and T cells into cardiac tissue; 2) expression of tumor necrosis factor a and monocyte chemoattractant protein 1 (MCP-1), and 3) cardiac fibrosis, including the expression of a-smooth muscle actin and collagen I (all p,0.05). Cultured T cells or macrophages alone expressed very low level of IFN-c, however, co-culture of T cells and macrophages increased IFN-c expression by 19.860.95 folds (vs. WT macrophage, p,0.001) and 20.9 6 2.09 folds (vs. WT T cells, p,0.001). In vitro co-culture studies using T cells and macrophages from WT or IFN-c KO mice demonstrated that T cells were primary source for IFN-c production. Co-culture of WT macrophages with WT T cells, but not with IFN-c-knockout T cells, increased IFN-c production (p,0.01). Moreover, IFN-c produced by T cells amplified MCP-1 expression in macrophages and stimulated macrophag

    Biomimetic biohybrid nanofibers containing Bovine Serum Albumin as a bioactive moiety for wound dressing

    Get PDF
    For the first time, a biohybrid nanofibrous wound dressing is developed via green electrospinning of a blend solution of bovine serum albumin (BSA) (1 and 3 wt.%) and polycaprolactone (PCL). In such a system, the components are miscible and interact through hydrogen bonding between the carbonyl group of PCL and the amine group of BSA, as verified by ATR-FTIR. As a result, the biohybrid nanofibers show a superior elastic modulus and elongation (300% and 58%, respectively) compared with the neat PCL nanofibers. The included protein induces a hydrophilicity effect to the PCL nanofibers, notably at the higher BSA content (3 wt.%). In contrast to the neat nanofibers, the biohybrid ones are bioactive and encourage formation of biominerals (made of amorphous calcium carbonate) on the surface, after immersion in simulated body fluid (SBF). Based on the WST-8 cell viability tests, NIH3T3 fibroblast cells were seen to properly interact with the biohybrid mats and to proliferate in their proximity. SEM images show that the cells largely adhere onto such nanofibers even more than they do on the neat ones and adopt a flattened and stretched shape. In addition, the Live/Dead assay and Phalloidin/DAPI staining assay confirm large cell viability and normal cell morphology on the biohybrid nanofiber mats after 4 days incubation. Taken together, BSA/PCL nanofibers are able to offer optimum mechanical properties (elasticity) as well as mineralization which can potentially stimulate the wound healing process, and can be considered a suitable candidate for wound dressing applications

    Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds

    Get PDF
    The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting

    Molecular modulators of celastrol as the keystones for its diverse pharmacological activities

    Full text link
    © 2018 The Authors In the recent years, much attention has been focused on identifying bioactive compounds from medicinal plants that could be employed in therapeutics, which is attributed to their potent pharmacological actions and better toxicological profile. One such example that has come into the light with considerable interest is the pentacyclic triterpenoid, celastrol, which has been found to provide substantial therapeutic properties in a variety of diseases. In an effort to further accelerate its potential to be utilized in clinical practice in the future; along with advancing technologies in the field of drug discovery and development, different researchers have been investigating on the various mechanisms and immunological targets of celastrol that underlie its broad spectrum of pharmacological properties. In this review, we have collated the various research findings related to the molecular modulators responsible for different pharmacological activities shown by celastrol. Our review will be of interest to the herbal, biological, molecular scientist and by providing a quick snapshot about celastrol giving a new direction in the area of herbal drug discovery and development

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
    corecore