399 research outputs found

    The Role of TLR4 in the Paclitaxel Effects on Neuronal Growth In Vitro

    Get PDF
    Paclitaxel (Pac) is an antitumor agent that is widely used for treatment of solid cancers. While being effective as a chemotherapeutic agent, Pac in high doses is neurotoxic, specifically targeting sensory innervations. In view of these toxic effects associated with conventional chemotherapy, decreasing the dose of Pac has been recently suggested as an alternative approach, which might limit neurotoxicity and immunosuppression. However, it remains unclear if low doses of Pac retain its neurotoxic properties or might exhibit unusual effects on neuronal cells. The goal of this study was to analyze the concentration-dependent effect of Pac on isolated and cultured DRG neuronal cells from wild-type and TLR4 knockout mice. Three different morphological parameters were analyzed: the number of neurons which developed neurites, the number of neurites per cell and the total length of neurites per cell. Our data demonstrate that low concentrations of Pac (0.1 nM and 0.5 nM) do not influence the neuronal growth in cultures in both wild type and TLR4 knockout mice. Higher concentrations of Pac (1-100 nM) had a significant effect on DRG neurons from wild type mice, affecting the number of neurons which developed neurites, number of neurites per cell, and the length of neurites. In DRG from TLR4 knockout mice high concentrations of Pac showed a similar effect on the number of neurons which developed neurites and the length of neurites. At the same time, the number of neurites per cell, indicating the process of growth cone initiation, was not affected by high concentrations of Pac. Thus, our data showed that Pac in high concentrations has a significant damaging effect on axonal growth and that this effect is partially mediated through TLR4 pathways. Low doses of Pac are devoid of neuronal toxicity and thus can be safely used in a chemomodulation mode. © 2013 Ustinova et al

    Patterns in blood pressure medication use in US incident dialysis patients over the first 6 months.

    Get PDF
    BACKGROUND: Several observational studies have evaluated the effect of a single exposure window with blood pressure (BP) medications on outcomes in incident dialysis patients, but whether BP medication prescription patterns remain stable or a single exposure window design is adequate to evaluate effect on outcomes is unclear. METHODS: We described patterns of BP medication prescription over 6 months after dialysis initiation in hemodialysis and peritoneal dialysis patients, stratified by cardiovascular comorbidity, diabetes, and other patient characteristics. The cohort included 13,072 adult patients (12,159 hemodialysis, 913 peritoneal dialysis) who initiated dialysis in Dialysis Clinic, Inc., facilities January 1, 2003-June 30, 2008, and remained on the original modality for at least 6 months. We evaluated monthly patterns in BP medication prescription over 6 months and at 12 and 24 months after initiation. RESULTS: Prescription patterns varied by dialysis modality over the first 6 months; substantial proportions of patients with prescriptions for beta-blockers, renin angiotensin system agents, and dihydropyridine calcium channel blockers in month 6 no longer had prescriptions for these medications by month 24. Prescription of specific medication classes varied by comorbidity, race/ethnicity, and age, but little by sex. The mean number of medications was 2.5 at month 6 in hemodialysis and peritoneal dialysis cohorts. CONCLUSIONS: This study evaluates BP medication patterns in both hemodialysis and peritoneal dialysis patients over the first 6 months of dialysis. Our findings highlight the challenges of assessing comparative effectiveness of a single BP medication class in dialysis patients. Longitudinal designs should be used to account for changes in BP medication management over time, and designs that incorporate common combinations should be considered

    On the Evolution of Hexose Transporters in Kinetoplastid Potozoans

    Get PDF
    Glucose, an almost universally used energy and carbon source, is processed through several well-known metabolic pathways, primarily glycolysis. Glucose uptake is considered to be the first step in glycolysis. In kinetoplastids, a protozoan group that includes relevant human pathogens, the importance of glucose uptake in different phases of the life cycles is well established, and hexose transporters have been proposed as targets for therapeutic drugs. However, little is known about the evolutionary history of these hexose transporters. Hexose transporters contain an intracellular N- and C- termini, and 12 transmembrane spans connected by alternate intracellular and extracellular loops. In the present work we tested the hypothesis that the evolutionary rate of the transmembrane span is different from that of the whole sequence and that it is possible to define evolutionary units inside the sequence. The phylogeny of whole molecules was compared to that of their transmembrane spans and the loops connecting the transmembrane spans. We show that the evolutionary units in these proteins primarily consist of clustered rather than individual transmembrane spans. These analyses demonstrate that there are evolutionary constraints on the organization of these proteins; more specifically, the order of the transmembrane spans along the protein is highly conserved. Finally, we defined a signature sequence for the identification of kinetoplastid hexose transporters

    ISRCTN12125882 - Influence of topical anti-VEGF (Ranibizumab) on the outcome of filtration surgery for glaucoma - Study Protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Excessive wound healing, with scarring of the episcleral tissue or encapsulation of the filtering bleb is the main reason for failure in trabeculectomy. Ranibizumab, an inhibitor of the Vascular Endothelial Growth Factor (VEGF), is seen as a promising candidate to prevent or treat extensive wound healing. We describe the design of a two phased study, i) assessing the local tolerability and safety of topical ranibizumab and ii) assessing the efficacy of topical ranibizumab against placebo in patients who underwent trabeculectomy with mitomycin C combined with phacoemulsification and intra ocular lens (IOL) implantation.</p> <p>Methods/Design</p> <p>In the first phase five patients that had trabeculectomy with mitomycin C combined with phacoemulsification and IOL implantation will be treated with topical ranibizumab (Lucentis<sup>®</sup>) eye drops (2 mg/ml) four times daily for one month. The treatment will be started at the first postoperative day. Patients will be assessed for local and systemic side effects using a standardised schedule. In the second phase, after successful completion of phase 1, consenting eligible patients who underwent trabeculectomy with mitomycin C combined with phacoemulsification and IOL implantation will be randomised to either receive topical ranibizumab eye drops (2 mg/ml) four times daily for 1 month or placebo (BSS 4x/d for 1 month). Patients will be reviewed weekly for 4 weeks until conjunctival sutures are removed. Further follow up examinations are planned after 3 and six months. Assessment of differences in the intraocular eye pressure will be considered primary, and bleb appearance/vascularisation using a standardized photography and the Moorfields bleb grading system, postoperative intraocular pressure and conjunctival wound healing problems will be considered secondary outcome parameters.</p> <p>Discussion</p> <p>Anti-VEGF-antibodies might be more effective in preventing scaring and might have fewer toxic side effects than the currently used anti-metabolites and may replace them in the long term.</p> <p>Trial Registration</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN12125882">ISRCTN12125882</a></p

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Severe Dengue Is Associated with Consumption of von Willebrand Factor and Its Cleaving Enzyme ADAMTS-13

    Get PDF
    Severe dengue infections are characterized by thrombocytopenia, clinical bleeding and plasma leakage. Activation of the endothelium, the inner lining of blood vessels, leads to the secretion of storage granules called Weibel Palade bodies (WPBs). We demonstrated that severe dengue in Indonesian children is associated with a strong increase in plasma levels of the WPB constituents von Willebrand factor (VWF), VWF propeptide and osteoprotegerin (OPG). An increased amount of the hemostatic protein VWF was in a hyperreactive, platelet binding conformation, and this was most pronounced in the children who died. VWF levels at enrollment were lower than expected from concurrent VWF propeptide and OPG levels and VWF levels did not correlate well with markers of disease severity. Together, this suggests that VWF is being consumed during severe dengue. Circulating levels of the VWF-cleaving enzyme ADAMTS-13 were reduced. VWF is a multimeric protein and a subset of children had a decrease in large and intermediate VWF multimers at discharge. In conclusion, severe dengue is associated with exocytosis of WPBs with consumption of VWF and low ADAMTS-13 activity levels. This may contribute to the thrombocytopenia and complications of dengue
    corecore