9 research outputs found

    Climate change and extreme weather events - Implications for food production, plant diseases, and pests

    Get PDF
    Current and future energy use from burning of fossil fuels and clearing of forests for cultivation can have profound effects on the global environment, agriculture, and the availability of low-cost, high-quality food for humans. Individual farmers and consumers are expected to be affected by changes in global and regional climate. The agricultural sector in both developing and developed areas needs to understand what is at stake and to prepare for the potential for change wisely. Despite tremendous improvements in technology and crop yield potential, food production remains highly dependent on climate, because solar radiation, temperature, and precipitation are the main drivers of crop growth. Plant diseases and pest infestations, as well as the supply of and demand for irrigation water are influenced by climate. For example, in recent decades, the persistent drought in the Sahelian region of Africa has caused continuing deterioration of food production; the 1988 Midwest drought led to a 30% reduction in U.S. corn production and cost taxpayers $3 billion in direct relief payments to farmers and, weather anomalies associated with the 1997-98 El Niño affected agriculture adversely in Nordeste, Brazil and Indonesia. Earlier in the century, the 1930s U.S. Southern Great Plains drought caused some 200,000 farm bankruptcies in the Dust Bowl; yields of wheat and corn were reduced by as much as 50%

    MRNaB: Mixed Reality-based Robot Navigation Interface using Optical-see-through MR-beacon

    Full text link
    Recent advancements in robotics have led to the development of numerous interfaces to enhance the intuitiveness of robot navigation. However, the reliance on traditional 2D displays imposes limitations on the simultaneous visualization of information. Mixed Reality (MR) technology addresses this issue by enhancing the dimensionality of information visualization, allowing users to perceive multiple pieces of information concurrently. This paper proposes Mixed reality-based robot navigation interface using an optical-see-through MR-beacon (MRNaB), a novel approach that incorporates an MR-beacon, situated atop the real-world environment, to function as a signal transmitter for robot navigation. This MR-beacon is designed to be persistent, eliminating the need for repeated navigation inputs for the same location. Our system is mainly constructed into four primary functions: "Add", "Move", "Delete", and "Select". These allow for the addition of a MR-beacon, location movement, its deletion, and the selection of MR-beacon for navigation purposes, respectively. The effectiveness of the proposed method was then validated through experiments by comparing it with the traditional 2D system. As the result, MRNaB was proven to increase the performance of the user when doing navigation to a certain place subjectively and objectively. For additional material, please check: https://mertcookimg.github.io/mrna

    Neoplasms of the Prostate

    No full text
    corecore