8,315 research outputs found

    Partially-massless higher-spin algebras and their finite-dimensional truncations

    Get PDF
    The global symmetry algebras of partially-massless (PM) higher-spin (HS) fields in (A)dSd+1_{d+1} are studied. The algebras involving PM generators up to depth 2(1)2\,(\ell-1) are defined as the maximal symmetries of free conformal scalar field with 22\,\ell order wave equation in dd dimensions. We review the construction of these algebras by quotienting certain ideals in the universal enveloping algebra of (A)dSd+1(A)dS_{d+1} isometries. We discuss another description in terms of Howe duality and derive the formula for computing trace in these algebras. This enables us to explicitly calculate the bilinear form for this one-parameter family of algebras. In particular, the bilinear form shows the appearance of additional ideal for any non-negative integer values of d/2\ell-d/2\,, which coincides with the annihilator of the one-row \ell-box Young diagram representation of sod+2\mathfrak{so}_{d+2}\,. Hence, the corresponding finite-dimensional coset algebra spanned by massless and PM generators is equivalent to the symmetries of this representation.Comment: 22 pages, references added, revised version, accepted to JHE

    A note on higher-derivative actions for free higher-spin fields

    Full text link
    Higher-derivative theories of free higher-spin fields are investigated focusing on their symmetries. Generalizing familiar two-derivative constrained formulations, we first construct less-constrained Einstein-like and Maxwell-like higher-derivative actions. Then, we construct Weyl-like actions - the actions admitting constrained Weyl symmetries - with different numbers of derivatives. They are presented in a factorized form making use of Einstein-like and Maxwell-like tensors. The last (highest-derivative) member of the hierarchy of the Weyl-like actions coincides with the Fradkin-Tseytlin conformal higher-spin action in four dimensions.Comment: Version to appear in JHEP, 22 page

    Weyl Action of Two-Column Mixed-Symmetry Field and Its Factorization Around (A)dS Space

    Get PDF
    We investigate the four-derivative free Weyl action for two-column mixed-symmetry field that makes use of maximal gauge symmetries. In flat space, the action can be uniquely determined from gauge and Weyl (trace shift) symmetry requirements. We show that there is a smooth and unique deformation of the flat action to (A)dS which keeps the same amount of gauge symmetries. This action admits a factorization into two distinct two-derivative actions having gauge parameters of different Young diagrams. Hence, this factorization pattern naturally extends that of the Weyl actions of symmetric higher spin fields to mixed-symmetry cases. The mass-deformation for these actions can be realized preserving one of the gauge symmetries. Although generically non-unitary, in special dimensions, unitarity is achieved selecting different mass deformations for dS and AdS. We consider particular examples of our construction such as New Massive Gravity in three dimensions, linearized bigravity in four dimensions and their arbitrary dimensional generalizations.Comment: 25 pages, minor corrections, references added, version published in JHE

    Higher-derivative massive actions from dimensional reduction

    Full text link
    A procedure to obtain higher-derivative free massive actions is proposed. It consists in dimensional reduction of conventional two-derivative massless actions, where solutions to constraints bring in higher derivatives. We apply this procedure to derive the arbitrary dimensional generalizations of (linearized) New Massive Gravity and New Topologically Massive Gravity.Comment: 18 page

    Notes on higher-spin algebras: minimal representations and structure constants

    Get PDF
    The higher-spin (HS) algebras so far known can be interpreted as the symmetries of the minimal representation of the isometry algebra. After discussing this connection briefly, we generalize this concept to any classical Lie algebras and consider the corresponding HS algebras. For sp(2N) and so(N), the minimal representations are unique so we get unique HS algebras. For sl(N), the minimal representation has one-parameter family, so does the corresponding HS algebra. The so(N) HS algebra is what underlies the Vasiliev theory while the sl(2) one coincides with the 3D HS algebra hs[lambda]. Finally, we derive the explicit expression of the structure constant of these algebras --- more precisely, their bilinear and trilinear forms. Several consistency checks are carried out for our results.Comment: minor corrections, references adde

    THE EFFECTS OF COMPETITION ON U.S. WHEAT MARKET SHARES IN EAST ASIA

    Get PDF
    The effects of competition between wheat export countries on the U.S. wheat market shares in ten Asian countries are analyzed. The variables are relative forms of the U.S. against Australian and Canadian variables to incorporate the effects of competition among exporters. From the estimation results, we could not find distinct effects of wheat prices, exchange rates, changes of the prices and currency values, and the U.S. export enhancement program on the U.S. wheat export performance. This implies that further studies are needed to analyze other factors beyond these variables for the Asian wheat import market, such as different protein or type of wheat, importing countries¡¯ trading policies, or utilization of the state trading agencies.International Wheat Trade, Market Share, Panel Estimation, Panel Unit-Root Test

    Efros-Shklovskii variable range hopping in reduced graphene oxide sheets of varying carbon sp2 fraction

    Get PDF
    We investigate the low temperature electron transport properties of chemically reduced graphene oxide (RGO) sheets with different carbon sp2 fractions of 55 to 80 %. We show that in the low bias (Ohmic) regime, the temperature (T) dependent resistance (R) of all the devices follow Efros-Shklovskii variable range hopping (ES-VRH) R ~ exp[(T(ES)/T)^1/2] with T(ES) decreasing from 30976 to 4225 K and electron localization length increasing from 0.46 to 3.21 nm with increasing sp2 fraction. From our data, we predict that for the temperature range used in our study, Mott-VRH may not be observed even at 100 % sp2 fraction samples due to residual topological defects and structural disorders. From the localization length, we calculate a bandgap variation of our RGO from 1.43 to 0.21 eV with increasing sp2 fraction from 55 to 80 % which agrees remarkably well with theoretical prediction. We also show that, in the high bias regime, the hopping is field driven and the data follow R ~ exp[(E(0)/E)^1/2] providing further evidence of ES-VRH.Comment: 13 pages, 6 figures, 1 tabl

    Looking for partially-massless gravity

    Full text link
    We study the possibility for a unitary theory of partially-massless (PM) spin-two field interacting with Gravity in arbitrary dimensions. We show that the gauge and parity invariant interaction of PM spin two particles requires the inclusion of specific massive spin-two fields and leads to a reconstruction of Conformal Gravity, or multiple copies of the latter in even dimensions. By relaxing the parity invariance, we find a possibility of a unitary theory in four dimensions, but this theory cannot be constructed in the standard formulation, due to the absence of the parity-odd cubic vertex therein. Finally, by relaxing the general covariance, we show that a `non-geometric' coupling between massless and PM spin-two fields may lead to an alternative possibility of a unitary theory. We also clarify some aspects of interactions between massless, partially-massless and massive fields, and resolve disagreements in the literature.Comment: 47 pages, journal version with minor correction
    corecore