21,687 research outputs found

    Probing the Epoch of Early Baryonic Infall Through 21cm Fluctuations

    Full text link
    After cosmological recombination, the primordial hydrogen gas decoupled from the cosmic microwave background (CMB) and fell into the gravitational potential wells of the dark matter. The neutral hydrogen imprinted acoustic oscillations on the pattern of brightness fluctuations due to its redshifted 21cm absorption of the CMB. Unlike CMB temperature fluctuations which probe the power spectrum at cosmic recombination, we show that observations of the 21cm fluctuations at z ~ 20-200 can measure four separate fluctuation modes (with a fifth mode requiring very high precision), thus providing a unique probe of the geometry and composition of the universe.Comment: 5 pages, 4 figures, MNRAS Letters, accepte

    Cores in Dwarf Galaxies from Dark Matter with a Yukawa Potential

    Full text link
    We show that cold dark matter particles interacting through a Yukawa potential could naturally explain the recently observed cores in dwarf galaxies without affecting the dynamics of objects with a much larger velocity dispersion, such as clusters of galaxies. The velocity dependence of the associated cross-section as well as the possible exothermic nature of the interaction alleviates earlier concerns about strongly interacting dark matter. Dark matter evaporation in low-mass objects might explain the observed deficit of satellite galaxies in the Milky Way halo and have important implications for the first galaxies and reionization.Comment: 6 pages, 2 figure

    The Habitable Epoch of the Early Universe

    Full text link
    In the redshift range 100<(1+z)<137, the cosmic microwave background (CMB) had a temperature of 273-373K (0-100 degrees Celsius), allowing early rocky planets (if any existed) to have liquid water chemistry on their surface and be habitable, irrespective of their distance from a star. In the standard LCDM cosmology, the first star-forming halos within our Hubble volume started collapsing at these redshifts, allowing the chemistry of life to possibly begin when the Universe was merely 10-17 million years old. The possibility of life starting when the average matter density was a million times bigger than it is today argues against the anthropic explanation for the low value of the cosmological constant.Comment: 12 pages, accepted for publication in the International Journal of Astrobiolog
    • …
    corecore