717 research outputs found

    Static non-reciprocity in mechanical metamaterials

    Full text link
    Reciprocity is a fundamental principle governing various physical systems, which ensures that the transfer function between any two points in space is identical, regardless of geometrical or material asymmetries. Breaking this transmission symmetry offers enhanced control over signal transport, isolation and source protection. So far, devices that break reciprocity have been mostly considered in dynamic systems, for electromagnetic, acoustic and mechanical wave propagation associated with spatio-temporal variations. Here we show that it is possible to strongly break reciprocity in static systems, realizing mechanical metamaterials that, by combining large nonlinearities with suitable geometrical asymmetries, and possibly topological features, exhibit vastly different output displacements under excitation from different sides, as well as one-way displacement amplification. In addition to extending non-reciprocity and isolation to statics, our work sheds new light on the understanding of energy propagation in non-linear materials with asymmetric crystalline structures and topological properties, opening avenues for energy absorption, conversion and harvesting, soft robotics, prosthetics and optomechanics.Comment: 19 pages, 3 figures, Supplementary information (11 pages and 5 figures

    Subcellular fractionation method to study endosomal trafficking of Kaposi’s sarcoma-associated herpesvirus

    Get PDF
    Background Virus entry involves multiple steps and is a highly orchestrated process on which successful infection collectively depends. Entry processes are commonly analyzed by monitoring internalized virus particles via Western blotting, polymerase chain reaction, and imaging techniques that allow scientist to track the intracellular location of the pathogen. Such studies have provided abundant direct evidence on how viruses interact with receptor molecules on the cell surface, induce cell signaling at the point of initial contact with the cell to facilitate internalization, and exploit existing endocytic mechanisms of the cell for their ultimate infectious agenda. However, there is dearth of knowledge in regards to trafficking of a virus via endosomes. Herein, we describe an optimized laboratory procedure to isolate individual organelles during different stages of endocytosis by performing subcellular fractionation. This methodology is established using Kaposi’s sarcoma-associated herpesvirus (KSHV) infection of human foreskin fibroblast (HFF) cells as a model. With KSHV and other herpesviruses alike, envelope glycoproteins have been widely reported to physically engage target cell surface receptors, such as integrins, in interactions leading to entry and subsequent infection. Results Subcellular fractionation was used to isolate early and late endosomes (EEs and LEs) by performing a series of centrifugations steps. Specifically, a centrifugation step post-homogenization was utilized to obtain the post-nuclear supernatant containing intact intracellular organelles in suspension. Successive fractionation via sucrose density gradient centrifugation was performed to isolate specific organelles including EEs and LEs. Intracellular KSHV trafficking was directly traced in the isolated endosomal fractions. Additionally, the subcellular fractionation approach demonstrates a key role for integrins in the endosomal trafficking of KSHV. The results obtained from fractionation studies corroborated those obtained by traditional imaging studies. Conclusions This study is the first of its kind to employ a sucrose flotation gradient assay to map intracellular KSHV trafficking in HFF cells. We are confident that such an approach will serve as a powerful tool to directly study intracellular trafficking of a virus, signaling events occurring on endosomal membranes, and dynamics of molecular events within endosomes that are crucial for uncoating and virus escape into the cytosol

    Exploitation of TerraSAR-X Data for Land use/Land Cover Analysis Using Object-Oriented Classification Approach in the African Sahel Area, Sudan.

    Get PDF
    Recently, object-oriented classification techniques based on image segmentation approaches are being studied using high-resolution satellite images to extract various thematic information. In this study different types of land use/land cover (LULC) types were analysed by employing object-oriented classification approach to dual TerraSAR-X images (HH and HV polarisation) at African Sahel. For that purpose, multi-resolution segmentation (MRS) of the Definiens software was used for creating the image objects. Using the feature space optimisation (FSO) tool the attributes of the TerraSAR-X image were optimised in order to obtain the best separability among classes for the LULC mapping. The backscattering coefficients (BSC) for some classes were observed to be different for HH and HV polarisations. The best separation distance of the tested spectral, shape and textural features showed different variations among the discriminated LULC classes. An overall accuracy of 84 % with a kappa value 0.82 was resulted from the classification scheme, while accuracy differences among the classes were kept minimal. Finally, the results highlighted the importance of a combine use of TerraSAR-X data and object-oriented classification approaches as a useful source of information and technique for LULC analysis in the African Sahel drylands

    Developmental abnormalities of mid and hindbrain: A study of 23 Egyptian patients

    Get PDF
    Introduction: With the advent of neuroimaging modalities specifically, magnetic resonance imaging (MRI), recognition of developmental defects of posterior fossa has greatly improved. The Aim: Is to delineate the clinical, cytogenetics and radiological features of patients with mid-hindbrain anomalies. Patient and Methods: Twenty-three patients with mid-hind brain malformations were included in this study. Complete clinical evaluation, cytogenetic analysis and neuroradiological study were done for each patient. Patients\' sex ratio was (M: F/ 0.9:1) and the mean age was 2.17 years. Parental consanguinity was 86.9 % and positive family history was recorded in 7 families. Based on clinico-radiological findings, patients were categorized as Joubert syndrome and related cerebellar disorders (34.8%), pontocerebellar hypoplasia (26.1%), lissencephaly cerebellar hypoplasia (13%), isolated cobblestone lissencephaly with normal muscle and eye (8.7%), isolated vermian hypoplasia (13%) and retrocerebellar cyst (4.4%). Results: Cytogenetic analysis revealed abnormalities in 3 patients (13%); pericentric inversion of chromosome 8 in a patient with lissencephaly cerebellar hypoplasia, del 5p14.3-pter delineating Cri du chat syndrome and associated with vermian hypoplasia and del 18q21.1-qter in a patient with retrocerebellar cyst due to paternal balanced translocation t (4;18). FISH for specific locus and whole chromosomal painting were used to document the assigned aberrations. Although most of the cerebellar malformations are of Mendelian inheritance, this study emphasizes the importance of chromosomal analysis for patients with posterior fossa anomalies. With more researches describing clinico-radiological characterization of hind brain dysgenesis will allow better understanding of these disorders, further delineation of relevant syndromes and new genes identification. Keywords: Cerebellar, hindbrain, joubert syndrome, cobblestone lissencephalypontocerebellar hypoplasia, cri du chat syndrome- del 18q21.1-qterEgyptian Journal of Medical Human Genetics Vol. 9 (2) 2008: pp. 215-23

    SPARC 2016 Salford postgraduate annual research conference book of abstracts

    Get PDF

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Circulating microparticles: square the circle

    Get PDF
    Background: The present review summarizes current knowledge about microparticles (MPs) and provides a systematic overview of last 20 years of research on circulating MPs, with particular focus on their clinical relevance. Results: MPs are a heterogeneous population of cell-derived vesicles, with sizes ranging between 50 and 1000 nm. MPs are capable of transferring peptides, proteins, lipid components, microRNA, mRNA, and DNA from one cell to another without direct cell-to-cell contact. Growing evidence suggests that MPs present in peripheral blood and body fluids contribute to the development and progression of cancer, and are of pathophysiological relevance for autoimmune, inflammatory, infectious, cardiovascular, hematological, and other diseases. MPs have large diagnostic potential as biomarkers; however, due to current technological limitations in purification of MPs and an absence of standardized methods of MP detection, challenges remain in validating the potential of MPs as a non-invasive and early diagnostic platform. Conclusions: Improvements in the effective deciphering of MP molecular signatures will be critical not only for diagnostics, but also for the evaluation of treatment regimens and predicting disease outcomes

    Principles of genetic circuit design

    Get PDF
    Cells navigate environments, communicate and build complex patterns by initiating gene expression in response to specific signals. Engineers seek to harness this capability to program cells to perform tasks or create chemicals and materials that match the complexity seen in nature. This Review describes new tools that aid the construction of genetic circuits. Circuit dynamics can be influenced by the choice of regulators and changed with expression 'tuning knobs'. We collate the failure modes encountered when assembling circuits, quantify their impact on performance and review mitigation efforts. Finally, we discuss the constraints that arise from circuits having to operate within a living cell. Collectively, better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.National Institute of General Medical Sciences (U.S.) (Grant P50 GM098792)National Institute of General Medical Sciences (U.S.) (Grant R01 GM095765)National Science Foundation (U.S.). Synthetic Biology Engineering Research Center (EEC0540879)Life Technologies, Inc. (A114510)National Science Foundation (U.S.). Graduate Research FellowshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant 4500000552

    Search for Anomalous Production of Events with a Photon, Jet, b-quark Jet, and Missing Transverse Energy

    Get PDF
    Submitted to Phys. Rev. DWe present a signature-based search for anomalous production of events containing a photon, two jets, of which at least one is identified as originating from a b quark, and missing transverse energy. The search uses data corresponding to 2.0/fb of integrated luminosity from p-pbar collisions at a center-of-mass energy of sqrt(s)=1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. From 6,697,466 events with a photon candidate with transverse energy ET> 25 GeV, we find 617 events with missing transverse energy > 25 GeV and two or more jets with ET> 15 GeV, at least one identified as originating from a b quark, versus an expectation of 607+- 113 events. Increasing the requirement on missing transverse energy to 50 GeV, we find 28 events versus an expectation of 30+-11 events. We find no indications of non-standard-model phenomena.We present a signature-based search for the anomalous production of events containing a photon, two jets, of which at least one is identified as originating from a b quark, and missing transverse energy (E̸T). The search uses data corresponding to 2.0  fb-1 of integrated luminosity from pp̅ collisions at a center-of-mass energy of √s=1.96  TeV, collected with the CDF II detector at the Fermilab Tevatron. From 6.697 47×106 events with a photon candidate with transverse energy ET>25  GeV, we find 617 events with E̸T>25  GeV and two or more jets with ET>15  GeV, at least one identified as originating from a b quark, versus an expectation of 607±113 events. Increasing the requirement on E̸T to 50 GeV, we find 28 events versus an expectation of 30±11 events. We find no indications of non-standard-model phenomena.Peer reviewe

    Search for Standard Model Higgs Boson Production in Association with a W Boson using a Neural Network

    Get PDF
    We present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector that correspond to an integrated luminosity of approximately 1.9 inverse fb. We select events consistent with a signature of a single charged lepton, missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method, a jet probability tagging method, and a neural network filter. We use kinematic information in an artificial neural network to improve discrimination between signal and background compared to previous analyses. The observed number of events and the neural network output distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching fraction ranging from 1.2 to 1.1 pb or 7.5 to 102 times the standard model expectation for Higgs boson masses from 110 to $150 GeV/c^2, respectively.We present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions (pp̅ →W±H→ℓνbb̅ ) at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector that correspond to an integrated luminosity of approximately 1.9  fb-1. We select events consistent with a signature of a single charged lepton (e±/μ±), missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method, a jet probability tagging method, and a neural network filter. We use kinematic information in an artificial neural network to improve discrimination between signal and background compared to previous analyses. The observed number of events and the neural network output distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching fraction ranging from 1.2 to 1.1 pb or 7.5 to 102 times the standard model expectation for Higgs boson masses from 110 to 150  GeV/c2, respectively.Peer reviewe
    corecore