250 research outputs found

    Polyhedral vesicles

    Full text link
    Polyhedral vesicles with a large bending modulus of the membrane such as the gel phase lipid membrane were studied using a Brownian dynamics simulation. The vesicles exhibit various polyhedral morphologies such as tetrahedron and cube shapes. We clarified two types of line defects on the edges of the polyhedrons: cracks of both monolayers at the spontaneous curvature of monolayer C0<0C_{\text {0}}<0, and a crack of the inner monolayer at C00C_{\text {0}}\ge0. Around the latter defect, the inner monolayer curves positively. Our results suggested that the polyhedral morphology is controlled by C0C_{\text {0}}.Comment: 4 pages, 5 figure

    High-Energy Aspects of Solar Flares: Overview of the Volume

    Full text link
    In this introductory chapter, we provide a brief summary of the successes and remaining challenges in understanding the solar flare phenomenon and its attendant implications for particle acceleration mechanisms in astrophysical plasmas. We also provide a brief overview of the contents of the other chapters in this volume, with particular reference to the well-observed flare of 2002 July 23Comment: This is the introductory article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya

    Get PDF
    Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization

    Global Search for New Physics with 2.0/fb at CDF

    Get PDF
    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (Vista) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps" that could indicate resonant production of new particles; and the Sleuth procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0/fb of ppbar collisions at sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D Rapid Communication

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Genomic epidemiology of SARS-CoV-2 infections in The Gambia: an analysis of routinely collected surveillance data between March, 2020, and January, 2022

    Get PDF
    Background: COVID-19, caused by SARS-CoV-2, is one of the deadliest pandemics of the past 100 years. Genomic sequencing has an important role in monitoring of the evolution of the virus, including the detection of new viral variants. We aimed to describe the genomic epidemiology of SARS-CoV-2 infections in The Gambia. Methods: Nasopharyngeal or oropharyngeal swabs collected from people with suspected cases of COVID-19 and international travellers were tested for SARS-CoV-2 with standard RT-PCR methods. SARS-CoV-2-positive samples were sequenced according to standard library preparation and sequencing protocols. Bioinformatic analysis was done using ARTIC pipelines and Pangolin was used to assign lineages. To construct phylogenetic trees, sequences were first stratified into different COVID-19 waves (waves 1–4) and aligned. Clustering analysis was done and phylogenetic trees constructed. Findings: Between March, 2020, and January, 2022, 11 911 confirmed cases of COVID-19 were recorded in The Gambia, and 1638 SARS-CoV-2 genomes were sequenced. Cases were broadly distributed into four waves, with more cases during the waves that coincided with the rainy season (July–October). Each wave occurred after the introduction of new viral variants or lineages, or both, generally those already established in Europe or in other African countries. Local transmission was higher during the first and third waves (ie, those that corresponded with the rainy season), in which the B.1.416 lineage and delta (AY.34.1) were dominant, respectively. The second wave was driven by the alpha and eta variants and the B.1.1.420 lineage. The fourth wave was driven by the omicron variant and was predominantly associated with the BA.1.1 lineage. Interpretation: More cases of SARS-CoV-2 infection were recorded in The Gambia during peaks of the pandemic that coincided with the rainy season, in line with transmission patterns for other respiratory viruses. The introduction of new lineages or variants preceded epidemic waves, highlighting the importance of implementing well structured genomic surveillance at a national level to detect and monitor emerging and circulating variants. Funding: Medical Research Unit The Gambia at London School of Hygiene & Tropical Medicine, UK Research and Innovation, WHO

    Saethre-Chotzen syndrome : cranofacial anomalies caused by genetic changes in the TWIST gene

    Get PDF
    In this thesis, one of the most frequently occurring and most variable craniosynostosis syndromes was investigated; Saethre-Chotzen syndrome. Craniosynostosis is the premature obliteration of cranial sutures in the developing embryo. It can also occur in the first few months of life. Saethre-Chotzen syndrome is, besides craniosynostosis, characterized by specific facial and limb abnormalities, of which the most frequently reported are ptosis, prominent crus helicis, cutaneous syndactyly of digit 2 and 3 on both hands and feet, and broad halluces. Saethre-Chotzen syndrome has been linked to the TWIST gene on chromosome 7p21.1. Mutations in and variably sized deletions of this gene can be found in patients with clinical features of Saethre-Chotzen syndrome. The latter, TWIST deletions, often also include part of the surrounding chromosome 7p and are reported to be associated with mental retardation. In Saethre-Chotzen patients, in whom neither a mutation nor a deletion of TWIST had been found, the FGFR3 P250R mutation was in some cases detected. This mutation has specifically been linked to Muenke syndrome that is characterized by unior bicoronal synostosis and slight facial dysmorphology. However, a Saethre-Chotzen like phenotype can also result from this mutation. Because of the possible overlap of Saethre-Chotzen with Muenke syndrome, these syndromes were studied in order to provide clinical criteria that discriminate between the two (chapter 4). Many phenotypic features occur in both syndromes. In addition, although unicoronal synostosis occurs slightly more frequently in Muenke syndrome, unicoronal and bicoronal synostosis are seen in both syndromes. The discrimination between Saethre-Chotzen and Muenke is often not made easily and the associated genes, TWIST and FGFR3, respectively, are simultaneously tested for pathogenic m

    W boson polarization measurement in the ttbar dilepton channel using the CDF II Detector

    Full text link
    We present a measurement of WW boson polarization in top-quark decays in ttˉt\bar{t} events with decays to dilepton final states using 5.1fb15.1 {\rm fb^{-1}} of integrated luminosity in ppˉp\bar{p} collisions collected by the CDF II detector at the Tevatron. A simultaneous measurement of the fractions of longitudinal (f0f_0) and right-handed (f+f_+) WW bosons yields the results f0=0.710.17+0.18(stat)±0.06(syst)f_0 = 0.71 ^{+0.18}_{-0.17} {\rm (stat)} \pm 0.06 {\rm (syst)} and f+=0.07±0.09(stat)±0.03(syst)f_+ = -0.07 \pm 0.09 {\rm (stat)} \pm 0.03 {\rm (syst)}. Combining this measurement with our previous result based on single lepton final states, we obtain f0=0.84±0.09(stat)±0.05(syst)f_0 = 0.84 \pm 0.09 {\rm (stat)} \pm 0.05 {\rm (syst)} and f+=0.16±0.05(stat)±0.04(syst)f_{+} = -0.16 \pm 0.05 {\rm (stat)} \pm 0.04 {\rm (syst)}. The results are consistent with standard model expectation.Comment: Published in Phys. Lett.
    corecore